Tandem emulsification for high-throughput production of double emulsions

Citation:

Eggersdorfer, M. L. ; Zheng, W. ; Nawar, S. ; Mercandetti, C. ; Ofner, A. ; Leibacher, I. ; Koehler, S. ; Weitz, D. A. Tandem emulsification for high-throughput production of double emulsions. Lab on a Chip 2017, 17, 936–942. Copy at http://www.tinyurl.com/l4753y6
eggersdorfer2017.pdf2.65 MB

Abstract:

Core–shell double emulsions produced using microfluidic methods with controlled structural parameters exhibit great potential in a wide range of applications, but the low production rate of microfluidic methods hinders the exploitation of the capabilities of microfluidics to produce double emulsions with well-defined features. A major obstacle towards the scaled-up production of core–shell double emulsions is the difficulty of achieving robust spatially controlled wettability in integrated microfluidic devices. Here, we use tandem emulsification, a two-step process with microfluidic devices, to scale up the production. With this method, single emulsions are generated in a first device and are re-injected directly into a second device to form uniform double emulsions. We demonstrate the application of tandem emulsification for scalable core–shell emulsion production with both integrated flow focusing and millipede devices and obtain emulsions of which over 90% are single-core monodisperse double emulsion drops. With both mechanisms, the shell thickness can be controlled, so that shells as thin as 3 μm are obtained for emulsions 50 μm in radius.

Publisher's Version

Last updated on 11/09/2020