Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation

Citation:

Liu, Y. ; Yang, G. ; Baby, T. ; Tengjisi, ; Chen, D. ; Weitz, D. A. ; Zhao, C. ‐X. Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie 2020, 59, 4720-4728. Copy at http://www.tinyurl.com/y2fvlmkp
liu2020.pdf6.9 MB

Abstract:

Poor solubility often leads to low drug efficacy. Encapsulation of water‐insoluble drugs in polymeric nanoparticles offers a solution. However, low drug loading remains a critical challenge. Now, a simple and robust sequential nanoprecipitation technology is used to produce stable drug‐core polymer‐shell nanoparticles with high drug loading (up to 58.5 %) from a wide range of polymers and drugs. This technology is based on tuning the precipitation time of drugs and polymers using a solvent system comprising multiple organic solvents, which allows the formation of drug nanoparticles first followed by immediate precipitation of one or two polymers. This technology offers a new strategy to manufacture polymeric nanoparticles with high drug loading having good long‐term stability and programmed release and opens a unique opportunity for drug delivery applications.

Publisher's Version

Last updated on 10/20/2020