Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity

Citation:

Zhang, W. ; Abbaspourrad, A. ; Chen, D. ; Campbell, E. ; Zhao, H. ; Li, Y. ; Li, Q. ; Weitz, D. A. Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity. Advanced Functional Materials 2017, 27, 1700975. Copy at http://www.tinyurl.com/y42ezpgq
zhang2017.pdf1.35 MB

Abstract:

In this study, a single‐step microfluidic approach is reported for encapsulation of enzymes within microcapsules with ultrathin polymeric shell for controlled release triggered by an osmotic shock. Using a glass capillary microfluidic device, monodisperse water‐in‐oil‐in‐water double emulsion droplets are fabricated with enzymes in the core and an ultrathin middle oil layer that solidifies to produce a consolidated inert polymeric shell with a thickness of a few tens to hundreds of nanometers. Through careful design of microcapsule membranes, a high percentage of cargo release, over 90%, is achieved, which is triggered by osmotic shock when using poly(methyl methacrylate) as the shell material. Moreover, it is demonstrated that compared to free enzymes, the encapsulated enzyme activity is maintained well for as long as 47 days at room temperature. This study not only extends industrial applications of enzymes, but also offers new opportunities for encapsulation of a wide range of sensitive molecules and biomolecules that can be controllably released upon applying osmotic shock.

Publisher's Version

Last updated on 11/09/2020