Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement

Citation:

Abbaspourrad, A. ; Duncanson, W. J. ; Lebedeva, N. ; Kim, S. - H. ; Zhushma, A. P. ; Datta, S. S. ; Dayton, P. A. ; Sheiko, S. S. ; Rubinstein, M. ; Weitz, D. A. Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement. Langmuir 2013, 29, 12352-12357. Copy at http://www.tinyurl.com/ky642ew

Abstract:

We introduce a facile approach for the production of gas-filled microcapsules designed to withstand high pressures. We exploit microfluidics to fabricate water-filled microcapsules that are then externally triggered to become gas-filled, thus making them more echogenic. In addition, the gas-filled microcapsules have a solid polymer shell making them resistant to pressure-induced buckling, which makes them more mechanically robust than traditional prestabilized microbubbles; this should increase the potential of their utility for acoustic imaging of porous media with high hydrostatic pressures such as oil reservoirs.

Last updated on 03/10/2015