High-throughput fluorescence detection using an integrated zone-plate array


Schonbrun, E. ; Abate, A. R. ; Steinvurzel, P. E. ; Weitz, D. A. ; Crozier, K. B. High-throughput fluorescence detection using an integrated zone-plate array. Lab on a Chip 2010, 10, 852-856. Copy at http://www.tinyurl.com/m8aeesf
[PDF]246 KB


Microfluidic devices enable massive parallelization of sample manipulation and delivery, but a similarly parallelized and integrated optical detection system does not yet exist. Standard large numerical aperture wide field or scanning optical systems are not capable of the large field of view and detection sensitivity required to collect fluorescence from parallel arrays of microfluidic devices. Instead, we present a fluorescence measurement platform based on a microfabricated zone-plate array integrated into a parallelized microfluidic device. The zone-plate array is orientated so that a single high numerical aperture zone plate is aligned to read out the fluorescence from each of 64 output channels of a drop-making device. The parallelization of microfluidics and optics produces an integrated system capable of analysis of nearly 200 000 drops per second.


Times Cited: 32

Last updated on 04/15/2014