Attractive Pickering Emulsion Gels

Citation:

Wu, B. ; Yang, C. ; Xin, Q. ; Kong, L. ; Eggersdorfer, M. ; Ruan, J. ; Zhao, P. ; Shan, J. ; Liu, K. ; Chen, D. ; et al. Attractive Pickering Emulsion Gels. Advanced Materials 2021, 33, 2102362. Copy at http://www.tinyurl.com/yj5smcp3
wu2021.pdf0 bytes

Abstract:

Properties of emulsions highly depend on the interdroplet interactions and, thus, engineering interdroplet interactions at molecular scale are essential to achieve desired emulsion systems. Here, attractive Pickering emulsion gels (APEGs) are designed and prepared by bridging neighboring particle-stabilized droplets via telechelic polymers. In the APEGs, each telechelic molecule with two amino end groups can simultaneously bind to two carboxyl functionalized nanoparticles in two neighboring droplets, forming a bridged network. The APEG systems show typical shear-thinning behaviors and their viscoelastic properties are tunable by temperature, pH, and molecular weight of the telechelic polymers, making them ideal for direct 3D printing. The APEGs can be photopolymerized to prepare APEG-templated porous materials and their microstructures can be tailored to optimize their performances, making the APEG systems promising for a wide range of applications.

Publisher's Version