Publications – 2017

Select publication year

Complete List of Publications

Publications

2017

Download 2017 citations
  1. Amstad, E. ; Weitz, D. A. “Reply to the ‘Comment on “Robust Scalable High Throughput Production of Monodisperse Drops“, Lab on a Chip 201717, 2332-2333. Reply to the ‘Comment on “Robust Scalable High Throughput Production of Monodisperse DropsPublisher's Version Reply to the ‘Comment on “Robust Scalable High Throughput Production of Monodisperse DropsPDF
  2. Kim, S. – H. ; Kim, J. W. ; Cho, J. – C. ; Weitz, D. A. “Correction: Double-emulsion drops with ultra-thin shells for capsule templates“, Lab on a Chip 201717, 567. Correction: Double-emulsion drops with ultra-thin shells for capsule templatesPublisher's Version Correction: Double-emulsion drops with ultra-thin shells for capsule templatesPDF
  3. Jawerth, L. M. ; Weitz, D. A. “Tracking the Structural Deformation of a Sheared Biopolymer Network“, In Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth2017; Vol. 693, pp. 255-269. Tracking the Structural Deformation of a Sheared Biopolymer NetworkPublisher's Version Tracking the Structural Deformation of a Sheared Biopolymer NetworkPDF
  4. Liber, S. R. ; Indech, G. ; van der Wee, E. B. ; Butenko, A. V. ; Kodger, T. E. ; Lu, P. J. ; Schofield, A. B. ; Weitz, D. A. ; van Blaaderen, A. ; Sloutskin, E. “Axial Confocal Tomography of Capillary-Contained Colloidal Structures“, Langmuir 201733, 13343–13349. Axial Confocal Tomography of Capillary-Contained Colloidal StructuresPublisher's Version Axial Confocal Tomography of Capillary-Contained Colloidal StructuresPDF
  5. Chen, D. ; Amstad, E. ; Zhao, C. – X. ; Cai, L. ; Fan, J. ; Chen, Q. ; Hai, M. ; Koehler, S. ; Zhang, H. ; Liang, F. ; et al. “Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal Surfactants“, ACS Nano 201711, 11978–11985. Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal SurfactantsPublisher's Version Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal SurfactantsPDF
  6. Liu, J. ; Wang, N. ; Yu, L. – J. ; Karton, A. ; Li, W. ; Zhang, W. ; Guo, F. ; Hou, L. ; Cheng, Q. ; Jiang, L. ; et al. “Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation“. Nat. Commun. 20178 2011. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separationPublisher's Version Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separationPDF
  7. Guo, M. ; Pegoraro, A. F. ; Mao, A. ; Zhou, E. H. ; Arany, P. R. ; Han, Y. ; Burnette, D. T. ; Jensen, M. H. ; Kasza, K. E. ; Moore, J. R. ; et al. “Cell volume change through water efflux impacts cell stiffness and stem cell fate“. Proc. Natl. Acad. Sci. U.S.A. 2017, 201705179. Cell volume change through water efflux impacts cell stiffness and stem cell fatePublisher's Version Cell volume change through water efflux impacts cell stiffness and stem cell fatePDF
  8. Hu, Y. ; Mao, A. S. ; Desai, R. M. ; Wang, H. ; Weitz, D. A. ; Mooney, D. J. “Controlled self-assembly of alginate microgels by rapidly binding molecule pairs“. Lab Chip 201717, 2481–2490. Controlled self-assembly of alginate microgels by rapidly binding molecule pairsPublisher's Version Controlled self-assembly of alginate microgels by rapidly binding molecule pairsPDF
  9. Mao, A. S. ; Shin, J. – W. ; Utech, S. ; Wang, H. ; Uzun, O. ; Li, W. ; Cooper, M. ; Hu, Y. ; Zhang, L. ; Weitz, D. A. ; et al. “Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery“. Nat. Mater. 201716, 236–243. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic deliveryPublisher's Version Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic deliveryPDF
  10. Chen, D. ; Zhao, C. – X. ; Lagoin, C. ; Hai, M. ; Arriaga, L. R. ; Koehler, S. ; Abbaspourrad, A. ; Weitz, D. A. “Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colour“. R. Soc. Open Sci. 20174 170919. Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colourPublisher's Version Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colourPDF
  11. Thiery, J. ; Rodts, S. ; Weitz, D. A. ; Coussot, P. “Drying regimes in homogeneous porous media from macro- to nanoscale“, Phys. Rev. Fluids 20172 074201. Drying regimes in homogeneous porous media from macro- to nanoscalePublisher's Version Drying regimes in homogeneous porous media from macro- to nanoscalePDF
  12. Habib, N. ; Avraham-Davidi, I. ; Basu, A. ; Burks, T. ; Shekhar, K. ; Hofree, M. ; Choudhury, S. R. ; Aguet, F. ; Gelfand, E. ; Ardlie, K. ; et al. “Massively parallel single-nucleus RNA-seq with DroNc-seq“, Nat. Methods 201714, 955. Massively parallel single-nucleus RNA-seq with DroNc-seqPublisher's Version Massively parallel single-nucleus RNA-seq with DroNc-seqPDF
  13. Du, J. S. ; Park, J. ; Kim, Q. H. ; Jhe, W. ; Dravid, V. P. ; Yang, D. ; Weitz, D. A. “Multistage Transformation and Lattice Fluctuation at AgCl–Ag Interface“, J. Phys. Chem. Lett. 20178 5853–5860. Multistage Transformation and Lattice Fluctuation at AgCl–Ag InterfacePublisher's Version Multistage Transformation and Lattice Fluctuation at AgCl–Ag InterfacePDF
  14. Wang, L. ; Chen, D. ; Gutierrez-Cuevas, K. G. ; Bisoyi, H. K. ; Fan, J. ; Zola, R. S. ; Li, G. ; Urbas, A. M. ; Bunning, T. J. ; Weitz, D. A. ; et al. “Optically reconfigurable chiral microspheres of self-organized helical superstructures with handedness inversion“, Mater. Horiz. 20174 1190–1195. Optically reconfigurable chiral microspheres of self-organized helical superstructures with handedness inversionPublisher's Version Optically reconfigurable chiral microspheres of self-organized helical superstructures with handedness inversionPDF
  15. Weitz, D. A. “Perspective on droplet-based single-cell sequencing“, Lab Chip 201717, 2539. Perspective on droplet-based single-cell sequencingPublisher's Version Perspective on droplet-based single-cell sequencingPDF
  16. Shi, W. ; Weitz, D. A. “Polymer Phase Separation in a Microcapsule Shell“, Macromolecules 201750, 7681–7686. Polymer Phase Separation in a Microcapsule ShellPublisher's Version Polymer Phase Separation in a Microcapsule ShellPDF
  17. Egan, P. F. ; Moore, J. R. ; Ehrlicher, A. J. ; Weitz, D. A. ; Schunn, C. ; Cagan, J. ; LeDuc, P. “Robust mechanobiological behavior emerges in heterogeneous myosin systems“, Proc. Natl. Acad. Sci. U.S.A. 2017114, E8147-E8154. Robust mechanobiological behavior emerges in heterogeneous myosin systemsPublisher's Version Robust mechanobiological behavior emerges in heterogeneous myosin systemsPDF
  18. Alim, K. ; Parsa, S. ; Weitz, D. A. ; Brenner, M. P. “Local Pore Size Correlations Determine Flow Distributions in Porous Media“, Physical Review Letters 2017119, 144501. Local Pore Size Correlations Determine Flow Distributions in Porous MediaPublisher's Version Local Pore Size Correlations Determine Flow Distributions in Porous MediaPDF
  19. Zhang, H. ; Qu, X. ; Chen, H. ; Kong, H. ; Ding, R. ; Chen, D. ; Zhang, X. ; Pei, H. ; Santos, H. A. ; Hai, M. ; et al. “Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer drugs for Biomedical Applications“, Advanced Healthcare Materials 20176 1700664. Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer drugs for Biomedical ApplicationsPublisher's Version Fabrication of Calcium Phosphate-Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer drugs for Biomedical ApplicationsPDF
  20. Wu, J. ; Cai, L. – H. ; Weitz, D. A. “Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks“, Advanced Materials 201729, 1702616. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible NetworksPublisher's Version Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible NetworksPDF
  21. Pegoraro, A. F. ; Janmey, P. ; Weitz, D. A. “Mechanical Properties of the Cytoskeleton and Cells“. Cold Spring Harbor-Perspectives in Biology 20179 1-12. Mechanical Properties of the Cytoskeleton and CellsPublisher's Version Mechanical Properties of the Cytoskeleton and CellsPDF
  22. Ung, W. L. ; Mutafopulos, K. ; Spink, P. ; Rambach, R. W. ; Franke, T. ; Weitz, D. A. “Enhanced Surface Acoustic Wave Cell Sorting by 3D Microfluidic-Chip Design“. Lab on a Chip 201717, 4059-4069. Enhanced Surface Acoustic Wave Cell Sorting by 3D Microfluidic-Chip DesignPublisher's Version Enhanced Surface Acoustic Wave Cell Sorting by 3D Microfluidic-Chip DesignPDF
  23. Chaudhuri, M. ; Allahyarov, E. ; Löwen, H. ; Egelhaaf, S. U. ; Weitz, D. A. “Triple Junction at the Triple Point Resolved on the Individual Particle Level“. Phys. Rev. Lett. 2017119, 128001. Triple Junction at the Triple Point Resolved on the Individual Particle LevelPublisher's Version Triple Junction at the Triple Point Resolved on the Individual Particle LevelPDF
  24. Zhao, C. – X. ; Chen, D. ; Hui, Y. ; Weitz, D. A. ; Middelberg, A. P. J. “Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability“. ChemPhysChem 201718, 1393–1399. Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their StabilityPublisher's Version Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their StabilityPDF
  25. Beroz, F. ; Jawerth, L. M. ; Münster, S. ; Weitz, D. A. ; Broedersz, C. P. ; Wingreen, N. S. “Physical limits to biomechanical sensing in disordered fibre networks.” Nature communications 20178 16096. Physical limits to biomechanical sensing in disordered fibre networks.Publisher's Version Physical limits to biomechanical sensing in disordered fibre networks.PDF
  26. Kong, L. ; Amstad, E. ; Hai, M. ; Ke, X. ; Chen, D. ; Zhao, C. – X. ; Weitz, D. A. “Biocompatible microcapsules with a water core templated from single emulsions” Chinese Chemical Letters 201728, 1897-1900. Biocompatible microcapsules with a water core templated from single emulsionsPublisher's Version Biocompatible microcapsules with a water core templated from single emulsionsPDF
  27. Fan, J. ; Kim, S. – H. ; Chen, Z. ; Zhou, S. ; Amstad, E. ; Lin, T. ; Weitz, D. A. “Creation of Faceted Polyhedral Microgels from Compressed Emulsions” Small 201713, 1701256. Creation of Faceted Polyhedral Microgels from Compressed EmulsionsPublisher's Version Creation of Faceted Polyhedral Microgels from Compressed EmulsionsPDF
  28. Zhang, W. ; Abbaspourrad, A. ; Chen, D. ; Campbell, E. ; Zhao, H. ; Li, Y. ; Li, Q. ; Weitz, D. A. “Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity” Advanced Functional Materials 201727, 1700975. Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced ActivityPublisher's Version Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced ActivityPDF
  29. Amstad, E. ; Chen, X. ; Eggersdorfer, M. ; Cohen, N. ; Kodger, T. E. ; Ren, C. L. ; Weitz, D. A. “Parallelization of microfluidic flow-focusing devices” Physical Review E 201795, 043105. Parallelization of microfluidic flow-focusing devicesPublisher's Version Parallelization of microfluidic flow-focusing devicesPDF
  30. Kodger, T. E. ; Lu, P. J. ; Wiseman, G. R. ; Weitz, D. A. “Stable, fluorescent PMMA particles for long-term observation of slow colloidal dynamics“, Langmuir 201733, 6382–6389. Stable, fluorescent PMMA particles for long-term observation of slow colloidal dynamicsPublisher's Version Stable, fluorescent PMMA particles for long-term observation of slow colloidal dynamicsPDF
  31. Haliburton, J. R. ; Kim, S. C. ; Clark, I. C. ; Sperling, R. A. ; Weitz, D. A. ; Abate, A. R. “Efficient extraction of oil from droplet microfluidic emulsions“, Biomicrofluidics 201711, 034111. Efficient extraction of oil from droplet microfluidic emulsionsPublisher's Version Efficient extraction of oil from droplet microfluidic emulsionsPDF
  32. Prakadan, S. M. ; Shalek, A. K. ; Weitz, D. A. “Scaling by shrinking: empowering single-cell’omics’ with microfluidic devices“, Nature Reviews Genetics 201718, 345–361. Scaling by shrinking: empowering single-cell’omics’ with microfluidic devicesPublisher's Version Scaling by shrinking: empowering single-cell’omics’ with microfluidic devicesPDF
  33. Qin, Y. ; Hu, Y. ; Koehler, S. A. ; Cai, L. ; Wen, J. ; Tan, X. ; Xu, W. L. ; Sheng, Q. ; Hou, X. ; Xue, J. ; et al. “Ultrafast Nanofiltration through Large-Area Single-layered Graphene Membranes“, ACS Applied Materials & Interfaces 20179, 9239–9244. Ultrafast Nanofiltration through Large-Area Single-layered Graphene MembranesPublisher's Version Ultrafast Nanofiltration through Large-Area Single-layered Graphene MembranesPDF
  34. He, Y. ; Battat, S. ; Fan, J. ; Abbaspourrad, A. ; Weitz, D. A. “Preparation of microparticles through co-flowing of partially miscible liquids“, Chemical Engineering Journal 2017320, 144-150. Preparation of microparticles through co-flowing of partially miscible liquidsPublisher's Version Preparation of microparticles through co-flowing of partially miscible liquidsPDF
  35. Eggersdorfer, M. L. ; Koren, V. ; Stolovicki, E. ; Amstad, E. ; Weitz, D. A. “Rapid Production of Submicron Drug Substance Particles by Supersonic Spray Drying“. Crystal Growth & Design 201717, 2046–2053. Rapid Production of Submicron Drug Substance Particles by Supersonic Spray DryingPublisher's Version Rapid Production of Submicron Drug Substance Particles by Supersonic Spray DryingPDF
  36. Yissachar, N. ; Zhou, Y. ; Ung, L. ; Lai, N. Y. ; Mohan, J. F. ; Ehrlicher, A. ; Weitz, D. A. ; Kasper, D. L. ; Chiu, I. M. ; Mathis, D. ; et al. “An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk“. Cell 2017168, 1135–1148. An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune CrosstalkPublisher's Version An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune CrosstalkPDF
  37. Qu, X. ; Zhang, H. ; Chen, H. ; Aldalbahi, A. ; Li, L. ; Tian, Y. ; Weitz, D. A. ; Pei, H. “Convection Driven Pull-Down Assays in Nanoliter Droplets using Scaffolded Aptamers“. Analytical Chemistry 201789, 3468–3473. Convection Driven Pull-Down Assays in Nanoliter Droplets using Scaffolded AptamersPublisher's Version Convection Driven Pull-Down Assays in Nanoliter Droplets using Scaffolded AptamersPDF
  38. Sprakel, J. ; Zaccone, A. ; Spaepen, F. ; Schall, P. ; Weitz, D. A. “Direct Observation of Entropic Stabilization of bcc Crystals Near Melting“. Physical Review Letters 2017118, 088003. Direct Observation of Entropic Stabilization of bcc Crystals Near MeltingPublisher's Version Direct Observation of Entropic Stabilization of bcc Crystals Near MeltingPDF
  39. Amato, D. V. ; Lee, H. ; Werner, J. G. ; Weitz, D. A. ; Patton, D. L. “Functional Microcapsules via Thiol- Ene Photopolymerization in Droplet-Based Microfluidics“. ACS applied materials & interfaces 20179 3288–3293. Functional Microcapsules via Thiol- Ene Photopolymerization in Droplet-Based MicrofluidicsPublisher's Version Functional Microcapsules via Thiol- Ene Photopolymerization in Droplet-Based MicrofluidicsPDF
  40. Kalinich, M. ; Bhan, I. ; Kwan, T. T. ; Miyamoto, D. T. ; Javaid, S. ; LiCausi, J. A. ; Milner, J. D. ; Hong, X. ; Goyal, L. ; Sil, S. ; et al. “An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma“. Proceedings of the National Academy of Sciences 2017114, 1123-1128. An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinomaPublisher's Version An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinomaPDF
  41. Amstad, E. ; Spaepen, F. ; Brenner, M. P. ; Weitz, D. A. “The microfluidic nebulator: production of sub-micrometer sized airborne drops“. Lab on a Chip 201717, 1475-1480. The microfluidic nebulator: production of sub-micrometer sized airborne dropsPublisher's Version The microfluidic nebulator: production of sub-micrometer sized airborne dropsPDF
  42. Huang, X. ; Eggersdorfer, M. ; Wu, J. ; Zhao, C. – X. ; Xu, Z. ; Chen, D. ; Weitz, D. A. “Collective generation of milliemulsions by step-emulsification“. RSC Advances 20177, 14932–14938. Collective generation of milliemulsions by step-emulsificationPublisher's Version Collective generation of milliemulsions by step-emulsificationPDF
  43. Ding, R. ; 丁睿骅, ; Ung, W. L. ; Heyman, J. A. ; Weitz, D. A. “Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter“. Biomicrofluidics 201711, 014114. Sensitive and predictable separation of microfluidic droplets by size using in-line passive filterPublisher's Version Sensitive and predictable separation of microfluidic droplets by size using in-line passive filterPDF
  44. Eggersdorfer, M. L. ; Zheng, W. ; Nawar, S. ; Mercandetti, C. ; Ofner, A. ; Leibacher, I. ; Koehler, S. ; Weitz, D. A. “Tandem emulsification for high-throughput production of double emulsions“. Lab on a Chip 201717, 936–942. Tandem emulsification for high-throughput production of double emulsionsPublisher's Version Tandem emulsification for high-throughput production of double emulsionsPDF
  45. Xie, X. ; Zhang, W. ; Abbaspourrad, A. ; Ahn, J. ; Bader, A. ; Bose, S. ; Vegas, A. ; Lin, J. ; Tao, J. ; Hang, T. ; et al. “Microfluidic Fabrication of Colloidal Nanomaterials-encapsulated Microcapsules for Biomolecular Sensing“. Nano Letters 201717, 2015–2020. Microfluidic Fabrication of Colloidal Nanomaterials-encapsulated Microcapsules for Biomolecular SensingPublisher's Version Microfluidic Fabrication of Colloidal Nanomaterials-encapsulated Microcapsules for Biomolecular SensingPDF
  46. Liu, D. ; Zhang, H. ; Cito, S. ; Fan, J. ; Mäkilä, E. M. ; Salonen, J. J. ; Hirvonen, J. ; Sikanen, T. M. ; Weitz, D. A. ; Santos, H. A. “Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation“. Nano Letters 201717, 606–614. Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic NanoprecipitationPublisher's Version Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic NanoprecipitationPDF