Publications – 2015

Select publication year

Complete List of Publications

Publications

2015

Download 2015 citations
  1. Terentjev, E. M. ; Weitz, D. A., The Oxford Handbook of Soft Condensed Matter Ed. Oxford University Press, 2015; pp. 640. The Oxford Handbook of Soft Condensed MatterPublisher’s Version
  2. Sharma, Y. ; Vargas, D. A. ; Pegoraro, A. F. ; Lepzelter, D. ; Weitz, D. A. ; Zaman, M. H. “Collective motion of mammalian cell cohorts in 3D.” Integrative Biology 20157 1526–1533. Collective motion of mammalian cell cohorts in 3DPublisher’s Version Collective motion of mammalian cell cohorts in 3DPDF
  3. Amstad, E. ; Spaepen, F. ; Weitz, D. A. “Crystallization of undercooled liquid fenofibrate.” Physical Chemistry Chemical Physics 201517, 30158–30161. Crystallization of undercooled liquid fenofibratePublisher’s Version Crystallization of undercooled liquid fenofibratePDF
  4. Rotem, A. ; Ram, O. ; Shoresh, N. ; Sperling, R. A. ; Goren, A. ; Weitz, D. A. ; Bernstein, B. E. “Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state”. Nature biotechnology 201533, 1165–1172. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin statePublisher’s Version Single-cell ChIP-seq reveals cell subpopulations defined by chromatin statePDF
  5. Vogel, N. ; Utech, S. ; England, G. T. ; Shirman, T. ; Phillips, K. R. ; Koay, N. ; Burgess, I. B. ; Kolle, M. ; Weitz, D. A. ; Aizenberg, J. “Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies”. Proceedings of the National Academy of Sciences 2015112, 10845–10850. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assembliesPublisher’s Version Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assembliesPDF
  6. Zhang, H. ; Cockrell, S. K. ; Kolawole, A. O. ; Rotem, A. ; Serohijos, A. W. R. ; Chang, C. B. ; Tao, Y. ; Mehoke, T. S. ; Han, Y. ; Lin, J. S. ; et al. “Isolation and analysis of rare norovirus recombinants from co-infected mice using drop-based microfluidics”. Journal of virology 2015, JVI–01137. Isolation and analysis of rare norovirus recombinants from co-infected mice using drop-based microfluidicsPublisher’s Version Isolation and analysis of rare norovirus recombinants from co-infected mice using drop-based microfluidicsPDF
  7. Abbaspourrad, A. ; Zhang, H. ; Tao, Y. ; Cui, N. ; Asahara, H. ; Zhou, Y. ; Yue, D. ; Koehler, S. A. ; Ung, W. L. ; Heyman, J. ; et al. “Label-free single-cell protein quantification using a drop-based mix-and-read system.” Scientific reports 20155 12756. Label-free single-cell protein quantification using a drop-based mix-and-read systemPublisher’s Version Label-free single-cell protein quantification using a drop-based mix-and-read systemPDF
  8. Utech, S. ; Prodanovic, R. ; Mao, A. S. ; Ostafe, R. ; Mooney, D. J. ; Weitz, D. A. “Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.” Advanced healthcare materials 20154 1628–1633. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell CulturePublisher’s Version Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell CulturePDF
  9. Mazutis, L. ; Vasiliauskas, R. ; Weitz, D. A. “Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.” Macromolecular Bioscience 201515, 1641-1646. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and ReleasePublisher’s Version Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and ReleasePDF
  10. Chang, C. B. ; Wilking, J. N. ; Kim, S. – H. ; Shum, H. C. ; Weitz, D. A. “Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth,” Small 201511, 3954–3961. Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm GrowthPublisher’s Version Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm GrowthPDF
  11. Wagner, O. ; Zieringer, M. ; Duncanson, W. J. ; Weitz, D. A. ; Haag, R. “Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer Microspheres,” International journal of molecular sciences 201516, 20183–20194. Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer MicrospheresPublisher’s Version Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer MicrospheresPDF
  12. Tao, Y. ; Rotem, A. ; Zhang, H. ; Chang, C. B. ; Basu, A. ; Kolawole, A. O. ; Koehler, S. A. ; Ren, Y. ; Lin, J. S. ; Pipas, J. M. ; et al. “Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics,” Lab on a Chip 201515, 3934–3940. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidicsPublisher’s Version Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidicsPDF
  13. Arriaga, L. R. ; Amstad, E. ; Weitz, D. A. “Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells,” Lab on a Chip 201515, 3335–3340. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shellsPublisher’s Version Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shellsPDF
  14. Park, J. – A. ; Kim, J. H. ; Bi, D. ; Mitchel, J. A. ; Qazvini, N. T. ; Tantisira, K. ; Park, C. Y. ; McGill, M. ; Kim, S. – H. ; Gweon, B. ; et al. “Unjamming and cell shape in the asthmatic airway epithelium,” Nature materials 201514, 1040–1048. Unjamming and cell shape in the asthmatic airway epitheliumPublisher’s Version Unjamming and cell shape in the asthmatic airway epitheliumPDF
  15. Han, H. – S. ; Cantalupo, P. G. ; Rotem, A. ; Cockrell, S. K. ; Carbonnaux, M. ; Pipas, J. M. ; Weitz, D. A. “Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample,” Angewandte Chemie 201554, 13985-13988. Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous SamplePublisher’s Version Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous SamplePDF
  16. Tao, Y. ; Rotem, A. ; Zhang, H. ; Cockrell, S. K. ; Koehler, S. A. ; Chang, C. B. ; Ung, W. L. ; Cantalupo, P. G. ; Ren, Y. ; Lin, J. S. ; et al. “Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based Microfluidics,” ChemBioChem 201516, 2167-2171. Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based MicrofluidicsPublisher’s Version Artifact-Free Quantification and Sequencing of Rare Recombinant Viruses by Using Drop-Based MicrofluidicsPDF
  17. Licup, A. J. ; Münster, S. ; Sharma, A. ; Sheinman, M. ; Jawerth, L. M. ; Fabry, B. ; Weitz, D. A. ; Mackintosh, F. C. “Stress controls the mechanics of collagen networks,” Proceedings of the National Academy of Sciences 2015112, 9573-9578. Stress controls the mechanics of collagen networksPublisher’s Version Stress controls the mechanics of collagen networksPDF
  18. Amstad, E. ; Gopinadhan, M. ; Holtze, C. ; Osuji, C. O. ; Brenner, M. P. ; Spaepen, F. ; Weitz, D. A. “Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator,” Science 2015349, 956-960. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulatorPublisher’s Version Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulatorPDF
  19. Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free Design Cai, L. – H. ; Kodger, T. E. ; Guerra, R. E. ; Pegoraro, A. F. ; Rubinstein, M. ; Weitz, D. A. “Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free Design,” Advanced Materials 201527, 5132-5140. Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free DesignPublisher’s Version Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free DesignPDF
  20. Duncanson, W. J. ; Kodger, T. E. ; Babaee, S. ; Gonzalez, G. ; Weitz, D. A. ; Bertoldi, K. “Microfluidic Fabrication and Micromechanics of Permeable and Impermeable Elastomeric Microbubbles,” Langmuir 201531, 3489-3493. Microfluidic Fabrication and Micromechanics of Permeable and Impermeable Elastomeric MicrobubblesPublisher’s Version Microfluidic Fabrication and Micromechanics of Permeable and Impermeable Elastomeric MicrobubblesPDF
  21. Park, J. ; Elmlund, H. ; Ercius, P. ; Yuk, J. M. ; Limmer, D. T. ; Chen, Q. ; Kim, K. ; Han, S. H. ; Weitz, D. A. ; Zettl, A. ; et al. “3D structure of individual nanocrystals in solution by electron microscopy,” Science 2015349, 290-295. 3D structure of individual nanocrystals in solution by electron microscopyPublisher’s Version 3D structure of individual nanocrystals in solution by electron microscopyPDF
  22. Park, J. ; Park, H. ; Ercius, P. ; Pegoraro, A. F. ; Xu, C. ; Kim, J. W. ; Han, S. H. ; Weitz, D. A. “Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy,” Nano Letters 201515, 4737-4744. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron MicroscopyPublisher’s Version Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron MicroscopyPDF
  23. Rotem, A. ; Ram, O. ; Shoresh, N. ; Sperling, R. A. ; Schnall-Levin, M. ; Zhang, H. ; Basu, A. ; Bernstein, B. E. ; Weitz, D. A. “High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics,” PLoS ONE 201510, e0116328. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based MicrofluidicsPublisher’s Version High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based MicrofluidicsPDF
  24. Jensen, M. H. ; Morris, E. J. ; Weitz, D. A. “Mechanics and dynamics of reconstituted cytoskeletal systems,” Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 20151853, 3038-3042. Mechanics and dynamics of reconstituted cytoskeletal systemsPublisher’s Version Mechanics and dynamics of reconstituted cytoskeletal systemsPDF
  25. Akamatsu, K. ; Kanasugi, S. ; Nakao, S. -ichi; Weitz, D. A. “Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets,” Langmuir 201531, 7166-7172. Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion DropletsPublisher’s Version Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion DropletsPDF
  26. Kong, F. ; Zhang, X. ; Zhang, H. ; Qu, X. ; Chen, D. ; Servos, M. ; Mäkilä, E. ; Salonen, J. ; Santos, H. A. ; Hai, M. ; et al. “Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes,” Advanced Functional Materials 201525, 3330–3340. Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant LiposomesPublisher’s Version Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant LiposomesPDF
  27. Fodor, É. ; Guo, M. ; Gov, N. S. ; Visco, P. ; Weitz, D. A. ; van Wijland, F. “Activity-driven fluctuations in living cells,” EPL (Europhysics Letters) 2015110, 48005. Activity-driven fluctuations in living cellsPublisher’s Version Activity-driven fluctuations in living cellsPDF
  28. Ehrlicher, A. J. ; Krishnan, R. ; Guo, M. ; Bidan, C. M. ; Weitz, D. A. ; Pollak, M. R. “Alpha-actinin binding kinetics modulate cellular dynamics and force generation,” Proceedings of the National Academy of Sciences 2015112, 6619-6624. Alpha-actinin binding kinetics modulate cellular dynamics and force generationPublisher’s Version Alpha-actinin binding kinetics modulate cellular dynamics and force generationPDF
  29. Hackelbusch, S. ; Rossow, T. ; Steinhilber, D. ; Weitz, D. A. ; Seiffert, S. “Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell Confinement,” Advanced Healthcare Materials 20154 1841-1848. Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell ConfinementPublisher’s Version Hybrid Microgels with Thermo-Tunable Elasticity for Controllable Cell ConfinementPDF
  30. Gaudreault, R. ; Di Cesare, N. ; van de Ven, T. G. M. ; Weitz, D. A. “Structure and Strength of Flocs of Precipitated Calcium Carbonate Induced by Various Polymers Used in Papermaking,” Industrial & Engineering Chemistry Research 201554, 6234-6246. Structure and Strength of Flocs of Precipitated Calcium Carbonate Induced by Various Polymers Used in PapermakingPublisher’s Version Structure and Strength of Flocs of Precipitated Calcium Carbonate Induced by Various Polymers Used in PapermakingPDF
  31. Klein, A. M. ; Mazutis, L. ; Akartuna, I. ; Tallapragada, N. ; Veres, A. ; Li, V. ; Peshkin, L. ; Weitz, D. A. ; Kirschner, M. W. “Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells,” Cell 2015161, 1187 – 1201. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem CellsPublisher’s Version Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem CellsPDF
  32. Macosko, E. Z. ; Basu, A. ; Satija, R. ; Nemesh, J. ; Shekhar, K. ; Goldman, M. ; Tirosh, I. ; Bialas, A. R. ; Kamitaki, N. ; Martersteck, E. M. ; et al. “Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets,” Cell 2015161, 1202 – 1214. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter DropletsPublisher’s Version Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter DropletsPDF
  33. Zhou, Y. ; Park, J. ; Shi, J. ; Chhowalla, M. ; Park, H. ; Weitz, D. A. ; Ramanathan, S. “Control of Emergent Properties at a Correlated Oxide Interface with Graphene,” Nano Letters 201515, 1627-1634. Control of Emergent Properties at a Correlated Oxide Interface with GraphenePublisher’s Version Control of Emergent Properties at a Correlated Oxide Interface with GraphenePDF
  34. Russell, E. R. ; Spaepen, F. ; Weitz, D. A. “Anisotropic elasticity of experimental colloidal Wigner crystals,” Phys. Rev. E 201591, 032310. Anisotropic elasticity of experimental colloidal Wigner crystalsPublisher’s Version Anisotropic elasticity of experimental colloidal Wigner crystalsPDF
  35. Bannwarth, M. B. ; Utech, S. ; Ebert, S. ; Weitz, D. A. ; Crespy, D. ; Landfester, K. “Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles,” ACS Nano 20159 2720-2728. Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled NanoparticlesPublisher’s Version Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled NanoparticlesPDF
  36. Kanai, T. ; Boon, N. ; Lu, P. J. ; Sloutskin, E. ; Schofield, A. B. ; Smallenburg, F. ; van Roij, R. ; Dijkstra, M. ; Weitz, D. A. “Crystallization and reentrant melting of charged colloids in nonpolar solvents,” Phys. Rev. E 201591, 030301. Crystallization and reentrant melting of charged colloids in nonpolar solventsPublisher’s Version Crystallization and reentrant melting of charged colloids in nonpolar solventsPDF
  37. Lee, W. C. ; Kim, K. ; Park, J. ; Koo, J. ; Jeong, H. Y. ; Lee, H. ; Weitz, D. A. ; Zettl, A. ; Takeuchi, S. “Graphene-templated directional growth of an inorganic nanowire,” Nature Nanotechnology 201510, 423-428. Graphene-templated directional growth of an inorganic nanowirePublisher’s Version Graphene-templated directional growth of an inorganic nanowirePDF
  38. Fischer, A. E. ; Wu, S. K. ; Proescher, J. B. G. ; Rotem, A. ; Chang, C. B. ; Zhang, H. ; Tao, Y. ; Mehoke, T. S. ; Thielen, P. M. ; Kolawole, A. O. ; et al. “A high-throughput drop microfluidic system for virus culture and analysis,” Journal of Virological Methods 2015213, 111-117. A high-throughput drop microfluidic system for virus culture and analysisPublisher’s Version A high-throughput drop microfluidic system for virus culture and analysisPDF
  39. Köster, S. ; Weitz, D. A. ; Goldman, R. D. ; Aebi, U. ; Herrmann, H. “Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks,” Current Opinion in Cell Biology 201532, 82-91. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networksPublisher’s Version Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networksPDF
  40. Jensen, M. H. ; Morris, E. J. ; Goldman, R. D. ; Weitz, D. A. “Emergent properties of composite semiflexible biopolymer networks,” BioArchitecture 20154 138-143. Emergent properties of composite semiflexible biopolymer networksPublisher’s Version Emergent properties of composite semiflexible biopolymer networksPDF
  41. Zieringer, M. A. ; Carroll, N. J. ; Abbaspourrad, A. ; Koehler, S. A. ; Weitz, D. A. “Microcapsules for Enhanced Cargo Retention and Diversity,” Small 201511, 2903-2909. Microcapsules for Enhanced Cargo Retention and DiversityPublisher’s Version Microcapsules for Enhanced Cargo Retention and DiversityPDF
  42. Polenz, I. ; Weitz, D. A. ; Baret, J. – C. “Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft Membranes,” Langmuir 201531, 1127–1134. Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft MembranesPublisher’s Version Polyurea Microcapsules in Microfluidics: Surfactant Control of Soft MembranesPDF
  43. Akartuna, I. ; Aubrecht, D. M. ; Kodger, T. E. ; Weitz, D. A. “Chemically induced coalescence in droplet-based microfluidics,” Lab Chip 201515, 1140-1144. Chemically induced coalescence in droplet-based microfluidicsPublisher’s Version Chemically induced coalescence in droplet-based microfluidicsPDF
  44. Shimanovich, U. ; Efimov, I. ; Mason, T. O. ; Flagmeier, P. ; Buell, A. K. ; Gedanken, A. ; Linse, S. ; Åkerfeldt, K. S. ; Dobson, C. M. ; Weitz, D. A. ; et al. “Protein Microgels from Amyloid Fibril Networks,” ACS Nano 20159 43–51. Protein Microgels from Amyloid Fibril NetworksPublisher’s Version Protein Microgels from Amyloid Fibril NetworksPDF