Publications – 2014

Select publication year

Complete List of Publications

Publications

2014

Download 2014 citations
  1. Fan, J. ; Li, Y. ; Bisoyi, H. K. ; Zola, R. S. ; Yang, Deng-ke, B. T. J. W. D. A. L. Q. “Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal Droplets,” Angewandte Chemie International Edition 201454, 2160-2164. Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal DropletsPublisher’s Version Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal DropletsPDF
  2. Kim, S. – H. ; Park, J. – G. ; Choi, T. M. ; Manoharan, V. N. ; Weitz, D. A. “Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules,” Nature communications 20145 3068. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsulesPublisher’s Version Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsulesPDF
  3. Deng, N. – N. ; Wang, W. ; Ju, X. – J. ; Xie, R. ; Weitz, D. A. ; Chu, L. – Y. “Reply to the ‘Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”’by J. Guzowski and P. Garstecki, Lab Chip, 2014, 14, DOI: 10.1039/C3LC51229K,” Lab on a Chip 201414, 1479–1480. Reply to the ‘Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”’by J. Guzowski and P. Garstecki, Lab Chip, 2014, 14, DOI: 10.1039/C3LC51229KPublisher’s Version Reply to the ‘Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”’by J. Guzowski and P. Garstecki, Lab Chip, 2014, 14, DOI: 10.1039/C3LC51229KPDF
  4. Thon, J. N. ; Mazutis, L. ; Wu, S. ; Sylman, J. L. ; Ehrlicher, A. ; Machlus, K. R. ; Feng, Q. ; Lu, S. ; Lanza, R. ; Neeves, K. B. ; et al. “Platelet bioreactor-on-a-chip,” Blood 2014124, 1857–1867. Platelet bioreactor-on-a-chipPublisher’s Version Platelet bioreactor-on-a-chipPDF
  5. Schmid, L. ; Weitz, D. A. ; Franke, T. “Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter,” Lab Chip 201414, 3710-3718. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorterPublisher’s Version Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorterPDF
  6. Lin, T. ; Rubinstein, S. M. ; Korchev, A. ; Weitz, D. A. “Pattern Formation of Charged Particles in an Electric Field,” Langmuir 201430, 12119-12123. Pattern Formation of Charged Particles in an Electric FieldPublisher’s Version Pattern Formation of Charged Particles in an Electric FieldPDF
  7. Polenz, I. ; Datta, S. S. ; Weitz, D. A. “Controlling the Morphology of Polyurea Microcapsules Using Microfluidics,” Langmuir 201430, 13405–13410. Controlling the Morphology of Polyurea Microcapsules Using MicrofluidicsPublisher’s Version Controlling the Morphology of Polyurea Microcapsules Using MicrofluidicsPDF
  8. Rowat, A. C. ; Sinha, N. N. ; Sörensen, P. M. ; Campàs, O. ; Castells, P. ; Rosenberg, D. ; Brenner, M. P. ; Weitz, D. A. “The kitchen as a physics classroom,” Physics Education 201449, 512. The kitchen as a physics classroomPublisher’s Version The kitchen as a physics classroomPDF
  9. Duncanson, W. J. ; Arriaga, L. R. ; Ung, W. L. ; Kopechek, J. ; Porter, T. ; Weitz, D. A. “Microfluidic Fabrication of Perfluorohexane-Shelled Double Emulsions for Controlled Loading and Acoustic-Triggered Release of Hydrophilic Agents,” Langmuir 201430, 13765–13770. Microfluidic Fabrication of Perfluorohexane-Shelled Double Emulsions for Controlled Loading and Acoustic-Triggered Release of Hydrophilic AgentsPublisher’s Version Microfluidic Fabrication of Perfluorohexane-Shelled Double Emulsions for Controlled Loading and Acoustic-Triggered Release of Hydrophilic AgentsPDF
  10. Jensen, K. E. ; Weitz, D. A. ; Spaepen, F. “Local shear transformations in deformed and quiescent hard-sphere colloidal glasses,” Physical Review E 201490, 042305. Local shear transformations in deformed and quiescent hard-sphere colloidal glassesPublisher’s Version Local shear transformations in deformed and quiescent hard-sphere colloidal glassesPDF
  11. Zaburdaev, V. ; Biais, N. ; Schmiedeberg, M. ; Eriksson, J. ; Jonsson, A. – B. ; Sheetz, M. P. ; Weitz, D. A. “Uncovering the Mechanism of Trapping and Cell Orientation during Neisseria gonorrhoeae Twitching Motility,” 2014107, 1523 – 1531. Uncovering the Mechanism of Trapping and Cell Orientation during Neisseria gonorrhoeae Twitching MotilityPublisher’s Version Uncovering the Mechanism of Trapping and Cell Orientation during Neisseria gonorrhoeae Twitching MotilityPDF
  12. Larsen, R. J. ; Kim, J. – W. ; Zukoski, C. F. ; Weitz, D. A. “Fluctuations in flow produced by competition between apparent wall slip and dilatancy,” Rheologica Acta 201453, 333-347. Fluctuations in flow produced by competition between apparent wall slip and dilatancyPublisher’s Version Fluctuations in flow produced by competition between apparent wall slip and dilatancyPDF
  13. Jarosz, D. F. ; Brown, J. C. S. ; Walker, G. A. ; Datta, M. S. ; Ung, W. L. ; Lancaster, A. K. ; Rotem, A. ; Chang, A. ; Newby, G. A. ; Weitz, D. A. ; et al. “Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism,” Cell 2014158, 1083 – 1093. Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of MetabolismPublisher’s Version Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of MetabolismPDF
  14. Wang, B. L. ; Ghaderi, A. ; Zhou, H. ; Agresti, J. ; Weitz, D. A. ; Fink, G. R. ; Stephanopoulos, G. “Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption,” Nat Biotech 201432, 473 – 478. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumptionPublisher’s Version Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumptionPDF
  15. Pessi, J. ; Santos, H. A. ; Miroshnyk, I. ; JoukoYliruusi, ; Weitz, D. A. ; Mirza, S. “Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery,” International Journal of Pharmaceutics 2014472, 82 – 87. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug deliveryPublisher’s Version Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug deliveryPDF
  16. Guo, M. ; Ehrlicher, A. J. ; Jensen, M. H. ; Renz, M. ; Moore, J. R. ; Goldman, R. D. ; Lippincott-Schwartz, J. ; Mackintosh, F. C. ; Weitz, D. A. “Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy,” Cell 2014158, 822 – 832. Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum MicroscopyPublisher’s Version Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum MicroscopyPDF
  17. Datta, S. S. ; Abbaspourrad, A. ; Weitz, D. A. “Expansion and rupture of charged microcapsules,” Mater. Horiz. 20141 92-95. Expansion and rupture of charged microcapsulesPublisher’s Version Expansion and rupture of charged microcapsulesPDF
  18. Carroll, N. J. ; Jensen, K. H. ; Parsa, S. ; Holbrook, M. N. ; Weitz, D. A. “Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence Photobleaching,” Langmuir 201430, 4868-4874. Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence PhotobleachingPublisher’s Version Measurement of Flow Velocity and Inference of Liquid Viscosity in a Microfluidic Channel by Fluorescence PhotobleachingPDF
  19. Ostafe, R. ; Prodanovic, R. ; Ung, W. L. ; Weitz, D. A. ; Fischer, R. “A high-throughput cellulase screening system based on droplet microfluidics,” Biomicrofluidics 20148 041102. A high-throughput cellulase screening system based on droplet microfluidicsPublisher’s Version A high-throughput cellulase screening system based on droplet microfluidicsPDF
  20. Datta, S. S. ; Dupin, J. – B. ; Weitz, D. A. “Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium,” Physics of Fluids 201426, 062004. Fluid breakup during simultaneous two-phase flow through a three-dimensional porous mediumPublisher’s Version Fluid breakup during simultaneous two-phase flow through a three-dimensional porous mediumPDF
  21. Chen, L. ; Li, Y. ; Fan, J. ; Bisoyi, H. K. ; Weitz, D. A. ; Li, Q. “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Advanced Optical Materials 20142 845-848. Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular SwitchPublisher’s Version Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular SwitchPDF
  22. Arriaga, L. R. ; Datta, S. S. ; Kim, S. – H. ; Amstad, E. ; Kodger, T. E. ; Monroy, F. ; Weitz, D. A. “Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation,” Small 201410, 950–956. Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain FormationPublisher’s Version Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain FormationPDF
  23. Cohen, S. I. A. ; Rajah, L. ; Yoon, C. H. ; Buell, A. K. ; White, D. A. ; Sperling, R. A. ; Vendruscolo, M. ; Terentjev, E. M. ; Dobson, C. M. ; Weitz, D. A. ; et al. “Spatial Propagation of Protein Polymerization,” Physical Review Letters 2014112, 098101. Spatial Propagation of Protein PolymerizationPublisher’s Version Spatial Propagation of Protein PolymerizationPDF
  24. Jensen, M. H. ; Morris, E. J. ; Gallant, C. M. ; Morgan, K. G. ; Weitz, D. A. ; Moore, J. R. “Mechanism of Calponin Stabilization of Cross-Linked Actin Networks,” Biophysical Journal 2014106, 793 – 800. Mechanism of Calponin Stabilization of Cross-Linked Actin NetworksPublisher’s Version Mechanism of Calponin Stabilization of Cross-Linked Actin NetworksPDF
  25. Datta, S. S. ; Ramakrishnan, T. S. ; Weitz, D. A. “Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium,” Physics of Fluids 201426, 022002. Mobilization of a trapped non-wetting fluid from a three-dimensional porous mediumPublisher’s Version Mobilization of a trapped non-wetting fluid from a three-dimensional porous mediumPDF
  26. Comunian, T. A. ; Abbaspourrad, A. ; Favaro-Trindade, C. S. ; Weitz, D. A. “Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique,” Food Chemistry 2014152, 271 – 275. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic techniquePublisher’s Version Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic techniquePDF
  27. Datta, S. S. ; Abbaspourrad, A. ; Amstad, E. ; Fan, J. ; Kim, S. – H. ; Romanowsky, M. ; Shum, H. C. ; Sun, B. J. ; Utada, A. S. ; Windbergs, M. ; et al. “Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release,” Advanced Materials 201426, 2205-2218. Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled ReleasePublisher’s Version Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled ReleasePDF
  28. Röding, M. ; Guo, M. ; Weitz, D. A. ; Rudemo, M. ; Särkkä, A. “Identifying directional persistence in intracellular particle motion using Hidden Markov Models,” Mathematical Biosciences 2014248, 140 – 145. Identifying directional persistence in intracellular particle motion using Hidden Markov ModelsPublisher’s Version Identifying directional persistence in intracellular particle motion using Hidden Markov ModelsPDF
  29. Herranz-Blanco, B. ; Arriaga, L. R. ; Makila, E. ; Correia, A. ; Shrestha, N. ; Mirza, S. ; Weitz, D. A. ; Salonen, J. ; Hirvonen, J. ; Santos, H. A. “Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release,” Lab on a Chip 201414, 1083 – 1086. Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug releasePublisher’s Version Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug releasePDF
  30. Zhang, W. ; Seminara, A. ; Suaris, M. ; Brenner, M. P. ; Weitz, D. A. ; Angelini, T. E. “Nutrient depletion in Bacillus subtilis biofilms triggers matrix production,” New Journal of Physics 201416, 015028. Nutrient depletion in Bacillus subtilis biofilms triggers matrix productionPublisher’s Version Nutrient depletion in Bacillus subtilis biofilms triggers matrix productionPDF
  31. Campas, O. ; Mammoto, T. ; Hasso, S. ; Sperling, R. A. ; O’Connell, D. ; Bischof, A. G. ; Maas, R. ; Weitz, D. A. ; Mahadevan, L. ; Ingber, D. E. “Quantifying cell-generated mechanical forces within living embryonic tissues,” Nat Meth 201411, 183 – 189. Quantifying cell-generated mechanical forces within living embryonic tissuesPublisher’s Version Quantifying cell-generated mechanical forces within living embryonic tissuesPDF
  32. Amstad, E. ; Datta, S. S. ; Weitz, D. A. “The microfluidic post-array device: High throughput production of single emulsion drops,” Lab on a Chip 201414, 705-709. The microfluidic post-array device: High throughput production of single emulsion dropsPublisher’s Version The microfluidic post-array device: High throughput production of single emulsion dropsPDF
  33. Lee, M. ; Collins, J. W. ; Aubrecht, D. M. ; Sperling, R. A. ; Solomon, L. ; Ha, J. – W. ; Yi, G. – R. ; Weitz, D. A. ; Manoharan, V. N. “Synchronized reinjection and coalescence of droplets in microfluidics,” Lab on a Chip 201414, 509-513. Synchronized reinjection and coalescence of droplets in microfluidicsPublisher’s Version Synchronized reinjection and coalescence of droplets in microfluidicsPDF