Publications – 2009

Select publication year

Complete List of Publications

Publications

2009

Download 2009 citations
  1. Vader, D.; Kabla, A.; Weitz, D. A.; Mahadevan, L. Strain-Induced Alignment in Collagen GelsPLOS One 20094 e5902. Strain-Induced Alignment in Collagen GelsPublisher’s Version Strain-Induced Alignment in Collagen GelsPDF
  2. Kasza, K. E.; Vader, D.; Koester, S.; Wang, N.; Weitz, D. A. Imaging Techniques for Measuring the Materials Properties of Cells. In Live Cell Imaging: A Laboratory Manual; CSHL Press, 2009. Imaging Techniques for Measuring the Materials Properties of CellsPublisher's Version
  3. Abate, A. R.; Lee, D.; Holtze, C.; Krummel, A.; Do, T.; Weitz, D. A. Functionalized glass coating for PDMS microfluidic devices. In Lab-on-a-Chip Technology (Vol. 1): Fabrication and Microfluidics; Caister Academic Press, 2009; Vol. 1. Functionalized glass coating for PDMS microfluidic devicesPublisher's Version
  4. Gaudreault, R.; Di Cesare, N.; Weitz, D. A.; van de Ven, T. G. M. Flocculation kinetics of precipitated calcium carbonateColloids and Surfaces 2009340, 56–65. Flocculation kinetics of precipitated calcium carbonatePublisher’s Version Flocculation kinetics of precipitated calcium carbonatePDF
  5. Carroll, N.; Mendez, S.; Edwards, J.; Weitz, D. A.; Petsev, Dimiter, N. Droplet-Based Microfluidics for Emulsion and Solvent Evaporation Synthesis of Monodisperse Mesoporous Silica Microspheres. In Structure and Functional Properties of Colloidal Systems; Taylor & Francis Group, 2009. Droplet-Based Microfluidics for Emulsion and Solvent Evaporation Synthesis of Monodisperse Mesoporous Silica MicrospheresPublisher's Version
  6. Zhou, E. H.; Trepat, X.; Park, C. Y.; Lenormand, G.; Oliver, M. N.; Mijailovich, S. M.; Hardin, C.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transitionPNAS 2009106, 10632–10637. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transitionPublisher’s Version Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transitionPDF
  7. Weitz, D. A. Unjamming a Polymer GlassScience 2009323, 214–215. Unjamming a Polymer GlassPublisher’s Version Unjamming a Polymer GlassPDF
  8. Wang, B.; Shum, H. C.; Weitz, D. A. Fabrication of monodisperse toroidal particles by polymer solidification in microfluidicsChemphyschem 200910, 641–645. Fabrication of monodisperse toroidal particles by polymer solidification in microfluidicsPublisher’s Version Fabrication of monodisperse toroidal particles by polymer solidification in microfluidicsPDF
  9. Wahrmund, J.; Kim, J.-W.; Chu, L.-Y.; Wang, C.; Li, Y.; Fernandez-Nieves, A.; Weitz, D. A.; Krokhin, A.; Hu, Z. Swelling kinetics of a microgel shellMacromolecules 200942, 9357–9365. Swelling kinetics of a microgel shellPublisher’s Version Swelling kinetics of a microgel shellPDF
  10. Trepat, X.; Wasserman, M. R.; Angelini, T. E.; Millet, E.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J. Physical forces during collective cell migrationNature Physics 20095, 426–430. Physical forces during collective cell migrationPublisher’s Version Physical forces during collective cell migrationPDF
  11. Tang, S. K. Y.; Li, Z.; Abate, A. R.; Agresti, J. J.; Weitz, D. A.; Psaltis, D.; Whitesides, G. M. A multi-color fast-switching microfluidic droplet dye laserLab on a Chip 20099, 2767–2771. A multi-color fast-switching microfluidic droplet dye laserPublisher’s Version A multi-color fast-switching microfluidic droplet dye laserPDF
  12. Studart, A. R.; Shum, H. C.; Weitz, D. A. Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structuresJournal of Physical Chemistry B 2009113, 3914–3919. Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structuresPublisher’s Version Arrested coalescence of particle-coated droplets into nonspherical supracolloidal structuresPDF
  13. Shum, H. C.; Bandyopadhyay, A.; Bose, S.; Weitz, D. A. Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatiteChemistry of Materials 200921, 5548–5555. Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatitePublisher’s Version Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatitePDF
  14. Shah, R. K.; Kim, J.-W.; Weitz, D. A. Janus supraparticles by induced phase separation of nanoparticles in dropletsAdvanced Materials 200921, 1949–1953. Janus supraparticles by induced phase separation of nanoparticles in dropletsPublisher’s Version Janus supraparticles by induced phase separation of nanoparticles in dropletsPDF
  15. Schmitz, C. H. J.; Rowat, A. C.; Koester, S.; Weitz, D. A. Dropspots: A picoliter array in a microfluidic deviceLab on a Chip 20099, 44–49. Dropspots: A picoliter array in a microfluidic devicePublisher’s Version Dropspots: A picoliter array in a microfluidic devicePDF
  16. Rowat, A. C.; Bird, J. C.; Agresti, J. J.; Rando, O. J.; Weitz, D. A. Tracking lineages of single cells in lines using a microfluidic deviceProceedings of the National Academy of Sciences of the United States of America 2009106, 18149–18154. Tracking lineages of single cells in lines using a microfluidic devicePublisher’s Version Tracking lineages of single cells in lines using a microfluidic devicePDF
  17. Rowat, A. C.; Weitz, D. A. Understanding epigenetic regulation: Tracking protein levels across multiple generations of cellsEuropean Physical Journal-Special Topics 2009178, 71–80. Understanding epigenetic regulation: Tracking protein levels across multiple generations of cellsPublisher’s Version Understanding epigenetic regulation: Tracking protein levels across multiple generations of cellsPDF
  18. Ramsteiner, I. B.; Jensen, K. E.; Weitz, D. A.; Spaepen, F. Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfacesPhysical Review E 200979, 011403. Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfacesPublisher’s Version Experimental observation of the crystallization of hard-sphere colloidal particles by sedimentation onto flat and patterned surfacesPDF
  19. Peng, Y.; Chen, W.; Fischer, T. M.; Weitz, D. A.; Tong, P. Short-time self-diffusion of nearly hard spheres at an oil-water interfaceJournal of Fluid Mechanics 2009618, 243–261. Short-time self-diffusion of nearly hard spheres at an oil-water interfacePublisher’s Version Short-time self-diffusion of nearly hard spheres at an oil-water interfacePDF
  20. Nakamura, F.; Heikkinen, O.; Pentikaeinen, O. T.; Osborn, T. M.; Kasza, K. E.; Weitz, D. A.; Kupiainen, O.; Permi, P.; Kilpelaeinen, I.; Ylaenne, J.; et al. Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutationsPlos One 20094Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutationsPublisher’s Version Molecular basis of filamin A-FilGAP interaction and its impairment in congenital disorders associated with filamin A mutationsPDF
  21. Mattsson, J.; Wyss, H. M.; Fernandez-Nieves, A.; Miyazaki, K.; Hu, Z.; Reichman, D. R.; Weitz, D. A. Soft colloids make strong glassesNature 2009462, 83–86. Soft colloids make strong glassesPublisher’s Version Soft colloids make strong glassesPDF
  22. Lietor-Santos, J. J.; Kim, C.; Lu, P. J.; Fernandez-Nieves, A.; Weitz, D. A. Gravitational compression of colloidal gelsEuropean Physical Journal E 200928, 159–164. Gravitational compression of colloidal gelsPublisher’s Version Gravitational compression of colloidal gelsPDF
  23. Lee, D.; Weitz, D. A. Nonspherical colloidosomes with multiple compartments from double emulsionsSmall 20095, 1932–1935. Nonspherical colloidosomes with multiple compartments from double emulsionsPublisher’s Version Nonspherical colloidosomes with multiple compartments from double emulsionsPDF
  24. Lee, D.; Ashcraft, J. N.; Verploegen, E.; Pashkovski, E.; Weitz, D. A. Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalanceLangmuir 200925, 5762–5766. Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalancePublisher’s Version Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalancePDF
  25. Larsen, R. J.; Dickey, M. D.; Whitesides, G. M.; Weitz, D. A. Viscoelastic properties of oxide-coated liquid metalsJournal of Rheology 200953, 1305–1326. Viscoelastic properties of oxide-coated liquid metalsPublisher’s Version Viscoelastic properties of oxide-coated liquid metalsPDF
  26. Koenderink, G. H.; Dogic, Z.; Nakamura, F.; Bendix, P. M.; MacKintosh, F. C.; Hartwig, J. H.; Stossel, T. P.; Weitz, D. A. An active biopolymer network controlled by molecular motorsProceedings of the National Academy of Sciences of the United States of America 2009106, 15192–15197. An active biopolymer network controlled by molecular motorsPublisher’s Version An active biopolymer network controlled by molecular motorsPDF
  27. Koester, S.; Evilevitch, A.; Jeembaeva, M.; Weitz, D. A. Influence of internal capsid pressure on viral infection by phage lambdaBiophysical Journal 200997, 1525–1529. Influence of internal capsid pressure on viral infection by phage lambdaPublisher’s Version Influence of internal capsid pressure on viral infection by phage lambdaPDF
  28. Kasza, K. E.; Nakamura, F.; Hu, S.; Kollmannsberger, P.; Bonakdar, N.; Fabry, B.; Stossel, T. P.; Wang, N.; Weitz, D. A. Filamin A is essential for active cell stiffening but not passive stiffening under external forceBiophysical Journal 200996, 4326–4335. Filamin A is essential for active cell stiffening but not passive stiffening under external forcePublisher’s Version Filamin A is essential for active cell stiffening but not passive stiffening under external forcePDF
  29. Kasza, K. E.; Koenderink, G. H.; Lin, Y. C.; Broedersz, C. P.; Messner, W.; Nakamura, F.; Stossel, T. P.; MacKintosh, F. C.; Weitz, D. A. Nonlinear elasticity of stiff biopolymers connected by flexible linkersPhysical Review E 200979, 041928. Nonlinear elasticity of stiff biopolymers connected by flexible linkersPublisher’s Version Nonlinear elasticity of stiff biopolymers connected by flexible linkersPDF
  30. Issadore, D.; Humphry, K. J.; Brown, K. A.; Sandberg, L.; Weitz, D. A.; Westervelt, R. M. Microwave dielectric heating of drops in microfluidic devicesLab on a Chip 20099, 1701–1706. Microwave dielectric heating of drops in microfluidic devicesPublisher’s Version Microwave dielectric heating of drops in microfluidic devicesPDF
  31. Humphry, K. J.; Ajdari, A.; Fernandez-Nieves, A.; Stone, H. A.; Weitz, D. A. Suppression of instabilities in multiphase flow by geometric confinementPhysical Review E 200979, 056310. Suppression of instabilities in multiphase flow by geometric confinementPublisher’s Version Suppression of instabilities in multiphase flow by geometric confinementPDF
  32. Guery, J.; Baudry, J.; Weitz, D. A.; Chaikin, P. M.; Bibette, J. Diffusion through colloidal shells under stressPhysical Review E 200979, 060402. Diffusion through colloidal shells under stressPublisher’s Version Diffusion through colloidal shells under stressPDF
  33. Franke, T.; Schmid, L.; Weitz, D. A.; Wixforth, A. Magneto-mechanical mixing and manipulation of picoliter volumes in vesiclesLab on a Chip 20099, 2831–2835. Magneto-mechanical mixing and manipulation of picoliter volumes in vesiclesPublisher’s Version Magneto-mechanical mixing and manipulation of picoliter volumes in vesiclesPDF
  34. Franke, T.; Abate, A. R.; Weitz, D. A.; Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devicesLab on a Chip 20099, 2625–2627. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devicesPublisher’s Version Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devicesPDF
  35. Ebina, W.; Rowat, A. C.; Weitz, D. A. Electrodes on a budget: Micropatterned electrode fabrication by wet chemical depositionBiomicrofluidics 20093, 034104. Electrodes on a budget: Micropatterned electrode fabrication by wet chemical depositionPublisher’s Version Electrodes on a budget: Micropatterned electrode fabrication by wet chemical depositionPDF
  36. Edd, J. F.; Humphry, K. J.; Irimia, D.; Weitz, D. A.; Toner, M. Nucleation and solidification in static arrays of monodisperse dropsLab on a Chip 20099, 1859–1865. Nucleation and solidification in static arrays of monodisperse dropsPublisher’s Version Nucleation and solidification in static arrays of monodisperse dropsPDF
  37. Chen, C.-H.; Shah, R. K.; Abate, A. R.; Weitz, D. A. Janus particles templated from double emulsion droplets generated using microfluidicsLangmuir 200925, 4320–4323. Janus particles templated from double emulsion droplets generated using microfluidicsPublisher’s Version Janus particles templated from double emulsion droplets generated using microfluidicsPDF
  38. Brangwynne, C. P.; Koenderink, G. H.; MacKintosh, F. C.; Weitz, D. A. Intracellular transport by active diffusionTrends in Cell Biology 200919, 423–427. Intracellular transport by active diffusionPublisher’s Version Intracellular transport by active diffusionPDF
  39. Chen, C.-H.; Abate, A. R.; Lee, D.; Terentjev, E. M.; Weitz, D. A. Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structureAdvanced Materials 200921, 3201–3204. Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structurePublisher’s Version Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structurePDF
  40. Angelini, T. E.; Roper, M.; Kolter, R.; Weitz, D. A.; Brenner, M. P. Bacillus subtilis spreads by surfing on waves of surfactantPNAS 2009106, 18109–18113. Bacillus subtilis spreads by surfing on waves of surfactantPublisher’s Version Bacillus subtilis spreads by surfing on waves of surfactantPDF
  41. Baret, J.-C.; Miller, O. J.; Taly, V.; Ryckelynck, M.; El-Harrak, A.; Frenz, L.; Rick, C.; Samuels, M. L.; Hutchison, J. B.; Agresti, J. J.; et al. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activityLab on a Chip 20099, 1850–1858. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activityPublisher’s Version Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activityPDF
  42. Abate, A. R.; Weitz, D. A. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidicsSmall 20095, 2030–2032. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidicsPublisher’s Version High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidicsPDF
  43. Abate, A. R.; Romanowsky, M. B.; Agresti, J. J.; Weitz, D. A. Valve-based flow focusing for drop formationApplied Physics Letters 200994, 023503. Valve-based flow focusing for drop formationPublisher’s Version Valve-based flow focusing for drop formationPDF
  44. Abate, A. R.; Chen, C.-H.; Agresti, J. J.; Weitz, D. A. Beating Poisson encapsulation statistics using close-packed orderingLab on a Chip 20099, 2628–2631. Beating Poisson encapsulation statistics using close-packed orderingPublisher’s Version Beating Poisson encapsulation statistics using close-packed orderingPDF
  45. Abate, A. R.; Poitzsch, A.; Hwang, Y.; Lee, J.; Czerwinska, J.; Weitz, D. A. Impact of inlet channel geometry on microfluidic drop formationPhysical Review E 200980, 026310. Impact of inlet channel geometry on microfluidic drop formationPublisher’s Version Impact of inlet channel geometry on microfluidic drop formationPDF
  46. Lu, P. J.; Oki, H.; Frey, C. A.; Chamitoff, G. E.; Chiao, L.; Fincke, E. M.; Foale, C. M.; Magnus, S. H.; McArthur, William S., J.; Tani, D. M.; et al. Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationJ Real-Time Image Proc 20095, 179–193. Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationPublisher’s Version Orders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationPDF