Like-charged particles at liquid interfaces

Nikolaides et al. propose that the puzzling attraction that occurs between micrometre-sized particles adsorbed at an aqueous interface is caused by a distortion of the liquid interface that is due to the dipolar electric field of the particles and which induces a capillary attraction. Here we argue that this effect cannot account for the observed attraction, on the fundamental grounds that it is inconsistent with force balance.

To estimate the influence of the surface deformation, the authors assume that the sum total of the electrostatic pressure acting on the liquid interface is equivalent to an external force, \(F \), pushing the particle into the water. The resulting deformation of the interface would give rise to a long-range interparticle interaction energy

\[
U(r) = \frac{F^2}{2\pi\gamma} \ln r_{0}
\]

(1)

where \(\gamma \) is the surface tension, \(r \) is the distance between particles, and \(r_0 \) is an arbitrary constant. However, the electrostatic force acts on the particle and the liquid interface simultaneously, so equation (1) does not apply.

The force \(F \) on the sphere is balanced by surface tension, creating a dimple in the water surface. The shape of the dimple is governed by the Young–Laplace equation

\[
[(1/R_1) + (1/R_2)] \gamma = \Delta p
\]

(2)

If the force acts only on the particle, then the pressure difference across the interface \(\Delta p = 0 \) and the radii of curvature \(R_1 \) and \(R_2 \) of the surface are equal but opposite (Fig. 1). The resulting water level around an isolated sphere would be \(h(r) = F/(2\pi\gamma) \ln (r/r_0) \) for small surface slopes, such that \(F = 2\pi\gamma h^2 \gamma \gy