Publications – 2021

Select publication year

Complete List of Publications

Publications

2021

Download 2021 citations
  1. Chen, Z. ; Lv, Z. ; Zhang, Z. ; Weitz, D. A. ; Zhang, H. ; Zhang, Y. ; Cui, W. “Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere.” Exploration 2021, 1 20210036. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere.Publisher's Version Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere.PDF
  2. Duraj-Thatte, A. M. ; Manjula-Basavanna, A. ; Rutledge, J. ; Xia, J. ; Hassan, S. ; Sourlis, A. ; Rubio, A. G. ; Lesha, A. ; Zenkl, M. ; Kan, A. ; et al. “Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers.” Nature Communications 2021, 12, 6600. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers.Publisher's Version Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers.PDF
  3. Liu, R. ; Wu, Q. ; Huang, X. ; Zhao, X. ; Chen, X. ; Chen, Y. ; Weitz, D. A. ; Song, Y. “Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release.” RSC Advances 2021, 11, 37814-37823. Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release.Publisher's Version Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release.PDF
  4. Chen, L. ; Xiao, Y. ; Wu, Q. ; Yan, X. ; Zhao, P. ; Ruan, J. ; Shan, J. ; Chen, D. ; Weitz, D. A. ; Ye, F. “Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.” Small 2021, 17, 2102579. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.Publisher's Version Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.PDF
  5. Shen, Y. ; Wu, H. ; Lu, P. J. ; Wang, D. ; Shayegan, M. ; Li, H. ; Shi, W. ; Wang, Z. ; Cai, L. ; Xia, J. ; et al. “Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In Vitro Multicomponent Interpenetrating Cytoskeletal Networks.” Physical Review Letters 2021, 127, 108101. Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In Vitro Multicomponent Interpenetrating Cytoskeletal Networks.Publisher's Version Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In Vitro Multicomponent Interpenetrating Cytoskeletal Networks.PDF
  6. Parsa, S. ; Zareei, A. ; Santanach-Carreras, E. ; Morris, E. J. ; Amir, A. ; Xiao, L. ; Weitz, D. A. “Unexpected scaling of interstitial velocities with permeability due to polymer retention in porous media.” Physical Review Fluids 2021, 6 L082302. Unexpected scaling of interstitial velocities with permeability due to polymer retention in porous media.Publisher's Version Unexpected scaling of interstitial velocities with permeability due to polymer retention in porous media.PDF
  7. Aime, S. ; Sabato, M. ; Xiao, L. ; Weitz, D. A. “Dynamic Speckle Holography.” Physical Review Letters 2021, 127, 088003. Dynamic Speckle HolographyPublisher's Version Dynamic Speckle HolographyPDF
  8. Mohammed, D. ; Park, C. Y. ; Fredberg, J. J. ; Weitz, D. A. “Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin.” Scientific Reports 2021, 11, 16279. Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherinPublisher's Version Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherinPDF
  9. Chen, L. ; Yang, C. ; Xiao, Y. ; Yan, X. ; Hu, L. ; Eggersdorfer, M. ; Chen, D. ; Weitz, D. A. ; Ye, F. “Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales.” Materials Today Nano 2021, 16, 100136. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scalesPublisher's Version
  10. Wu, B. ; Yang, C. ; Xin, Q. ; Kong, L. ; Eggersdorfer, M. ; Ruan, J. ; Zhao, P. ; Shan, J. ; Liu, K. ; Chen, D. ; et al. “Attractive Pickering Emulsion Gels.” Advanced Materials 2021, 33, 2102362. Attractive Pickering Emulsion GelsPublisher's Version Attractive Pickering Emulsion GelsPDF
  11. Chowdhury, M. S. ; Zheng, W. ; Singh, A. K. ; Ong, I. L. H. ; Hou, Y. ; Heyman, J. A. ; Faghani, A. ; Amstad, E. ; Weitz, D. A. ; Haag, R. “Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays.” Soft Matter 2021, 17, 7260-7267. Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays.Publisher's Version Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays.PDF
  12. Shiba, K. ; Li, G. ; Virot, E. ; Yoshikawa, G. ; Weitz, D. A. “Microchannel measurements of viscosity for both gases and liquids.” Lab on a Chip 2021, 21, 2805-2811. Microchannel measurements of viscosity for both gases and liquids.Publisher's Version Microchannel measurements of viscosity for both gases and liquids.PDF
  13. Yang, G. ; Liu, Y. ; Hui, Y. ; Tengjisi ; Chen, D. ; Weitz, D. A. ; Zhao, C. – X. “Implications of Quenching-to-Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye-Labeled Nanoparticles.” Angewandte Chemie 2021, 133, 15554-15563. Implications of Quenching-to-Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye-Labeled Nanoparticles.Publisher's Version Implications of Quenching-to-Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye-Labeled Nanoparticles.PDF
  14. Ko, J. ; Wang, Y. ; Sheng, K. ; Weitz, D. A. ; Weissleder, R. “Sequencing-Based Protein Analysis of Single Extracellular Vesicles.” ACS Nano 2021, 15, 5631-5638. Sequencing-Based Protein Analysis of Single Extracellular Vesicles.Publisher's Version Sequencing-Based Protein Analysis of Single Extracellular Vesicles.PDF
  15. Xia, J. ; Cai, L. ; Wu, H. ; Mackintosh, F. C. ; Weitz, D. A. “Anomalous mechanics of Zn2+-modified fibrin networks.” PNAS 2021, 118. Anomalous mechanics of Zn2+-modified fibrin networks.Publisher's Version Anomalous mechanics of Zn2+-modified fibrin networks.PDF
  16. An, P. ; Cantalupo, P. G. ; Zheng, W. ; Saenz-Robles, M. T. ; Duray, A. M. ; Weitz, D. A. ; Pipas, J. M. “Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection.” Journal of Virology 2021, 95. Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection.Publisher's Version Single-Cell Transcriptomics Reveals a Heterogeneous Cellular Response to BK Virus Infection.PDF
  17. Tang, J. ; Fan, B. ; Xiao, L. ; Tian, S. ; Zhang, F. ; Zhang, L. ; Weitz, D. A. “A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs.” SPE Journal 2021, 26, 482-497. A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs.Publisher's Version A New Ensemble Machine-Learning Framework for Searching Sweet Spots in Shale Reservoirs.PDF
  18. Werner, J. G. ; Lee, H. ; Wiesner, U. ; Weitz, D. A. “Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly.” ACS Nano 2021, 15, 3490-3499. Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly.Publisher's Version Ordered Mesoporous Microcapsules from Double Emulsion Confined Block Copolymer Self-Assembly.PDF
  19. Tiribocchi, A. ; Montessori, A. ; Lauricella, M. ; Bonaccorso, F. ; Succi, S. ; Aime, S. ; Milani, M. ; Weitz, D. A. “The vortex-driven dynamics of droplets within droplets.” Nature Communications 2021, 12, 1-10. The vortex-driven dynamics of droplets within droplets.Publisher's Version The vortex-driven dynamics of droplets within droplets.PDF