We study the physics of soft condensed matter, materials which are easily deformable by external stresses, electric or magnetic fields, or even by thermal fluctuations. These materials typically possess structures which are much larger than atomic or molecular scales; the structure and dynamics at mesoscopic scales determine the physical properties of these materials. The goal of our research is to probe and understand this relationship. We study both synthetic and biological materials; our interests extend from fundamental physics to technological applications, from basic materials questions to specific biological problems. The techniques we use include light scattering, optical microscopy, rheology, and microfluidics.

Weiz Lab showcase (disregard content of iframe below)



Recent Publications

  1. Deveney, B.T.; Heyman, J.A.; Rosenthal, R.G.; Weitz, D.A.; Werner, J.G. A biocompatible surfactant film for stable microfluidic dropletsLab on a Chip 2025.  A biocompatible surfactant film for stable microfluidic dropletsPublisher's Version A biocompatible surfactant film for stable microfluidic dropletsPDF
  2. Yang, C.; Menge, J.; Zhvania, N.; Yu, M.; Yang, H.; Chen, D.; Zheng, Z.; Weitz, D.A.; Jahnke, K. Engineering Asymmetric Nanoscale Vesicles for mRNA and Protein Delivery to CellsAdvanced Functional Materials 2025, 35, 2505738.  Engineering Asymmetric Nanoscale Vesicles for mRNA and Protein Delivery to CellsPublisher's Version Engineering Asymmetric Nanoscale Vesicles for mRNA and Protein Delivery to CellsPDF
  3. Wang, X.; Li, W.; Lou, W.; Li, W.; Zhang, L.; Weitz, D.A. Single-Cell Microgel Microrobot for Targeted and Imaging-Guided Cell TherapyCCS Chemistry 2025.  Single-Cell Microgel Microrobot for Targeted and Imaging-Guided Cell TherapyPublisher's Version Single-Cell Microgel Microrobot for Targeted and Imaging-Guided Cell TherapyPDF
  4. Thorne, B.; Xu, J.; Mahavadi, S.C.; Song, Y.-S.; Weitz, D.A. Contact Angle Mapping Using MicrodropletsLangmuir 2025, 41, 21869–21877.  Contact Angle Mapping Using MicrodropletsPublisher's Version Contact Angle Mapping Using MicrodropletsPDF
  5. Guo, M.; Wong, I.Y.; Moore, A.S.; Medalia, O.; Lippincott-Schwartz; Weitz, D.A.; Goldman, R.D. Vimentin intermediate filaments as structural and mechanical coordinators of mesenchymal cellsNat Cell Biol 2025, 27, 1210–1218.  Vimentin intermediate filaments as structural and mechanical coordinators of mesenchymal cellsPublisher's Version Vimentin intermediate filaments as structural and mechanical coordinators of mesenchymal cellsPDF
  6. Chen, A.; Xu, W.; Zhang, X.D.; Lao, J.; Zhao, X.; Milcic, K.; Weitz, D.A. Ultrahigh-Throughput Multiplexed Screening of Purified Protein from Cell-Free Expression Using Droplet MicrofluidicsJ. Am. Chem. Soc. 2025, 147, 28758–28772.  Ultrahigh-Throughput Multiplexed Screening of Purified Protein from Cell-Free Expression Using Droplet MicrofluidicsPublisher's Version Ultrahigh-Throughput Multiplexed Screening of Purified Protein from Cell-Free Expression Using Droplet MicrofluidicsPDF
  7. Yang, G.; Liu, Y.; Devkota, S.R.; Hui, Y.; Zhao, R.; Li, Y.; Weitz, D.A.; Zhao, C.-X. A Sustainable Biotechnology Approach for Mineral SeparationAdvanced Functional Materials 2025, e04992.  A Sustainable Biotechnology Approach for Mineral SeparationPublisher's Version A Sustainable Biotechnology Approach for Mineral SeparationPDF
  8. Ren, L.; Shi, J.; Liu, S.; Wang, Z.; Qiao, S.; Weitz, D.A.; Zhang, L. Tough Hybrid Hydrogels with Exceptional Swollen-State Mechanical Robustness via Nanocrystalline Domain EngineeringMacromolecules 2025, 58, 7975–7985.  Tough Hybrid Hydrogels with Exceptional Swollen-State Mechanical Robustness via Nanocrystalline Domain EngineeringPublisher's Version Tough Hybrid Hydrogels with Exceptional Swollen-State Mechanical Robustness via Nanocrystalline Domain EngineeringPDF
  9. Wilborn, A.M.; Almohammadi, H.; Qu, P.; Wang, Y.; Yang, Y.; Kay, R.; Kim, D; Bertoldi, K.; Weitz, D.A.; Aizenberg, J. Towards Differentiation in Untethered Microactuators: A Soft Fabrication StrategyAdvanced Materials 2025, 2507273.  Towards Differentiation in Untethered Microactuators: A Soft Fabrication StrategyPublisher's Version Towards Differentiation in Untethered Microactuators: A Soft Fabrication StrategyPDF
  10. Zhang, J.; Liu, R.; Yang, Z.; Luo, C.; Chen, J.; Guo, B.; Weitz, D.A.; Chen, D. Physicochemical and Surface Properties of Nanoparticles: Effects on Cellular Pathway and UptakeChemNanoMat 2025, 11, e202500043.  Physicochemical and Surface Properties of Nanoparticles: Effects on Cellular Pathway and UptakePublisher's Version Physicochemical and Surface Properties of Nanoparticles: Effects on Cellular Pathway and UptakePDF

More publications


We are grateful for the generous support from our federal sponsors, including the National Science Foundation (NSF), the National Institute of Health (NIH), the National Aeronautics and Space Administration (NASA) and the Defense Advanced Research Projects Agency (DARPA). We also gratefully acknowledge many academic and industrial partners.