
Dynamic Light Scattering
(aka QLS, PCS)

Oriented particles create interference patterns, each bright spot being a 
speckle.  The speckle pattern moves as the particle move, creating flickering.

All the motions and measurements  are described by correlations functions
• G2(!)- intensity correlation function describes particle motion
• G1(!)- electric field correlation function describes measured 
fluctuations

Which are related to connect the measurement and motion

Analysis Techniques:
• Treatment for monomodal distributions: linear and cumulant fits
• Treatment for non-monomodal distributions: Contin fits

It is also possible to measure other motions, such as rotation.
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Particles behave like ‘slits’, the orientation 
of which generates interference patterns

Generates a ‘speckle’ pattern

Various points reflect different 
scattering angles



Movement of the particles cause fluctuations 
in the pattern

The pattern ‘fluctuates’

Movement is defined by the rate of 
fluctuation



Measure the intensity of one speckle

Experimentally, the intensity of one 
‘speckle’ is measured



Order of magnitude for time-scale of fluctuations
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fluctuations occur on the time-scale that particles move about one 
wavelength of light…

Assuming Brownian motion 
of the particles…

The time-scale is:
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1. Measure fluctuations an convert 
into an Intensity Correlation 
Function

2. Describe the correlated movement 
of the particles, as related to 
particle size into an Electric-Field 
Correlation Function.

3. Equate the correlation functions, 
with the Seigert Relationship

How is the time scale of the fluctuations 
related to the particle movement?

Requires several steps:

4.  Analyze data using cumulants or 
CONTIN fitting routines



• Math/Theory

• Application/Optics

• Data Analysis

2 texts:

‘Light scattering by Small Particles’ 
by van de Hulst

‘Dynamic Light Scattering with 
applications to Chemistry, Biology 
and Physics’ by Berne and Pecora
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First, the Intensity Correlation Function, G2(!)

I(t) I(t+!)

Describes the rate of change in scattering intensity by comparing the intensity at 
time t to the intensity at a later time (t + !), providing a quantitative measurement 
of the flickering of the light

Mathematically, the correlation 
function is written as an integral 
over the product of intensities at 
some time and with some delay 
time, !

Which can be visualized as taking 
the intensity at I(t) times the 
intensity at I(t+!)- red), followed 
by the same product at I(t+t’)-
blue, and so on…

I(t+!’)
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The Intensity Correlation Function has the 
form of an exponential decay

plot linear in !

plot logarithmic in !

The correlation function typically 
exhibits an exponential decay



Instead, we correlate the 
motion of the particles 
relative to each other

It is Not Possible to Know 
How Each Particle Moves 
from the Flickering

Second, Electric Field Correlation Function, G1(!)
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Integrate the difference in distance between 
particles, assuming Brownian Motion

The electric field correlation function describes correlated particle movement, 
and is given as:
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G1(t) decays as and 
exponential with a decay 
constant 345for a system 
undergoing Brownian motion

Constructive 
interference

Destructive 
interference



The decay constant is re-written as a function 
of the particle size
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Boltzmann Constant

temperature

viscosity particle radius

with q2 reflecting the distance the particle travels … and the application of 
Stokes-Einstein equation
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The decay constant is related by Brownian Motion to the diffusivity by:
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Rate of decay depends on the particle size

large particles diffuse slower than 
small particles, and the correlation 
function decays at a slower rate.

and the rate of
other motions 

(internal, rotation…)



"#
$

%&
' ()

2
2 11 )(gB)(G !*!

Finally, the two correlation function can be 
equated using the Seigert Relationship

Intensity Correlation 
Function
(recall: this is measured)

Electric Field Correlation 
Function
(recall: this is what the 
particles are doing)

where B is the baseline and * is an instrumental response, both of which are 
constants

The Seigert Relationship is expressed as:

Based on the principle of Guassian random
processes – which the scattering light usually is

*2
E  IIntensity EE >))



• G2(!) intensity correlation function measures 
change in the scattering intensity

• G1(!) electric field correlation function describes 
correlated particle movements

• The Seigert Relationship equates the functions 
connecting the measurable to the motions
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• Math/Theory

• Application/Optics

• Data Analysis



So, consider a simple example of the process

Measure the intensity fluctuations from a dispersion of particles.



Commercial Equipment
• Need laser, optics, correlator, etc…

• Commercial Sources
– Brookhaven Instruments 
– Malvern Instruments 
– Wyatt Instruments

(multiangle measurements, HPLC detectors)
– ALV (what we have)

• Costs range $50K to $100K



Instrumental Considerations
• Light Source

– Monochromatic, polarized and continuous (laser)
– Static light scattering goes as 1/!4, suggests shorter 

wavelengths give more signal
• typical Ar+ ion laser at 488 nm 

– Dynamic light scattering S/N goes as !, while detector 
sensitivity goes as 1/!, so wavelength is not too critical.  
HeNe lasers are cheap and compact, but weaker (! = 633 nm)

– Power needed depends on sample (but there can be heating!)
– Calculation of G(") depends on two photons, and so on the 

power/area in the cell.  Typically focus the beam to about 
200 #m

– Sample can be as small as 1 mm in diameter and 1 mm high.  
Typical volumes 3-5 ml.



Instrument Considerations
• Need to avoid noise in the correlation functions

– Dust!  
• Usually adds an unwanted (slow) component
• See in analysis – some software help
• AVOID by proper sample preparation when possible

– Poisson Noise
• counting noise, decreases with added counts, important to have 

enough counts; typically 107 over all with 106 at baseline

– Stray light
• adds an unwanted heterodyne component (exp (-$) instead of 

exp (-2$).  Avoid with proper design



Correlators
• Need to calculate

which is approximated by

so calculate by recording I(t) and sequentially 
multiplying and adding the result.  To do in real time 
requires about ns calculations thus specialized 
hardware

• Pike – 1970s (Royal Signals and Radar Establishment, 
Malvern, England)

• Langley and Ford (UMASS) ? Brookhaven
• 1980’s Klaus Schatzel, Kiel University ? ALV
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Autocorrelation function is collected
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! (2sec) G2+!,

The auto-correlator collects and 
integrates the intensity at the 

different delay times, !, all in real time

Each point is a different !.
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… then, create the raw correlation function

Evaluate the autocorrelation function from the intensity data
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… then, normalize the raw correlation function 
through some simple re-arrangements

+ , !*!! 30)
0

) 22 e
B

B)(GC

*

B

* is usually less 
than unity, from 
measuring more 
than one speckle

B should 
go to zero
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General principle: the measured decay is the 
intensity-weighted sum of the decay of the 

individual particles

Recall that different size particles exhibit different decay rates.



Expressed in mathematical terms

For example, consider a mixture of particles:

0.30 intensity-weighted of 100 nm particles, 
0.25 intensity-weighted of 200 nm particles,
0.20 intensity-weighted of 300 nm particles,
0.15 intensity-weighted of 400 nm particles,
0.10 intensity-weighted of 500 nm particles.

g1(!) can be described as the movements from individual particles; where 
G(3) is the intensity-weighted coefficient associated with the amount of 
each particle.
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wieghted sum of the 
individual decay

A sample correlation function would look 
something like this…

Recall sizes
0.30 (100 nm) 
0.25 (200 nm) 
0.20 (300 nm) 
0.15 (400 nm) 
0.10 (500 nm)

Short times 
emphasize the 
intensity weighted-
average

long times reflected 
the larger particles



• Math/Theory

• Application/Optics

• Data Analysis



r = ??? in cm

3 = ??? in sec-1 (experimentally determined)

D = ??? in cm2 sec-1

Finally, calculate the size from the decay 
constant
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Diffusivity is determined… 
need refractive index, 
wavelength and angle

Calculate the radius, but 
need the Boltzmann
constant, temperature and 
viscosity



What is left?
Need a systematic way to determine 3’s

Monomodal Distribution

Non-Monomodal Distribution

Linear Fit

Exponential Sampling

CONTIN regularization

Cumulant Expansion

the distribution of particle sizes defines the approach to fitting 
the decay constant



What is left?
Need a systematic way to determine 3’s

Monomodal Distribution

Non-Monomodal Distribution

Linear Fit

Exponential Sampling

CONTIN regularization

Cumulant Expansion

First, consider the monomodal distribution, where the particles have 
an average mean with a distribution about the mean (red box, first)



Tau

0 1000 2000 3000 4000 5000

C(
! )

1e-4

1e-3

1e-2

1e-1

Tau

0 1000 2000 3000 4000 5000

C(
! )

0.0

0.2

0.4

0.6

0.8

!*! Dqln
B

B)(Gln 22 20)7
8
9

:
;
< 0

Simplest- the ‘basic’ linear fit

Take the logarithm of the 
normalized correlation function

ln *

Slope = -2Dq2

C(!)

Assumes that all the particles fall about a relatively tight mean

ln C(!)

Long ! there is just noise…

… but, need Long ! for 
a good B



Cumulant expansion
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+ , solid  : )( 6RRNG /3

+ , (vesicle) shell hollow  : )( 4RRNG /3

Integral sum of decay curves 

Probability Density Function
(Coefficients of Expansion)

Intraparticle Form Factor
And Interparticle Form Factor

that both DEPEND ON q

Larger particles are ‘seen’ more…

Assumes that the particles distribution is centered on a mean, with a 
Gaussian-like distribution about the mean.

Where to start…



Then, re-arrange the Seigert Relationship in 
terms of a cumulant expansion

Recall that the correlation function can be expressed as
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Cumulant expansion is a rigorous defined tool of re-writing a sum of exponential 
decay functions as a power series expansion… so, that the sum from the 
previous page is replaced by the expansion (GET BACK HERE IN A FEW 
MINUTES)
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… need to carry through some mathematics
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First, define a mean value

is the mean ‘gamma’3
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Second, substitute the power series for the difference term (second term)



Cumulant Expansion (more)

Working through the integrals…
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Such that k2 is the second moment, k3 is the third moment, …
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Note that x terms >> x2 terms, so that x2 are negligible

Cumulant Expansion (even more)
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Cumulant Expansion (more…)

average decay
intercept polydispersity

Polydispersity index 2
2
3

)
kC

… and indicates the width of the distribution

005.0)C is mono-dispersed

Note:
Multiplied 

by 2



Sample of Cumulant Expansion
390 nm Beads
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Examine residuals to the fit

uncorrelated

correlated



What is left?
Need a systematic way to determine 3’s

Monomodal Distribution

Non-Monomodal Distribution

Linear Fit

Exponential Sampling

CONTIN regularization

Cumulant Expansion

Second, consider the different non-monomodal distribution, where the 
particles have a distribution no longer centered about the mean (red 
box, next)

Multiple modes because of polydispersity, internal modes, 
interactions… all of what make the sample interesting!



Exponential Sampling for Bimodal Distribution
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To be reliable the sizes must be ~5X different

e.g. bimodal distribution

Assume a finite number 
of particles, each with 
their own decay



Pitfalls
• Correlation functions need to be measured properly

a)  Good measurements with appropriate delay times

b)  Incomplete, missing the early (fast) decays

c)  Incomplete, missing the long time (slow) decays



CONTIN Fit for Random Distribution
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Laplace Transform of f(t)

In light scattering regime.
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So, to find the distribution function, apply the inverse transformation 
which is done by numerical methods, with a combination of minimization of 
variance and regularization (smoothing).
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CONTIN
• Developed by Steve Provencher in 1980’s

• Recognize that

is an example of a “Fredholm Integral” where

This is a classic ill-posed problem – which means that in 
the presence of noise many DIFFERENT sets of A(s) 
exist that satisfy the equation 
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measured              object of desire      defines experiment



CONTIN (cont.)

So how to proceed?
1. Limit information – i.e., be satisfied with the mean 

value (like in the cumulant analysis)
2. Use a priori information

– Non-negative G($) (negative values are not physical)
– Assume a form for G($) (like exponential sampling)
– Assume a shape

3. Parsimony or regularization
– Take the smoothest or simplest solution
– Regularization (CONTIN)

ERROR = (error of fit) +function of smoothness (usually 
minimization of second derivative)

– Maximum entropy methods (+ p log (p) terms)



Analysis of Decay Times

+ , + ,!! rDDqeg 6
1

200/
3

q2

Slope = Dapp

Diffusion (translation)
Finite Rotational Diffusion

3

q2

Slope = Dapp

Dr

Rotational diffusion can 
change the offset of the 
decay – can also observe with
depolarized light

First question:  How do decay times vary with q?

$= Dappq2 where Dapp is a 
collective diffusion coefficient
that depends on interactions
and concentration
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that depends on shape

Cylinders
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Not spheres… but still dilute, so D = kT/f



Concentration Dependence
• In more concentrated dispersions (and can only find 

the definition of ‘concentrated’ generally by 
experiment’), measure a proper Dapp, but because of 
interactions Dapp (c)

• Again, D = <thermo>/<fluid> =
kT(1 + f(B) + …)/fo(1 + kfc + …)

So Dapp= D0 (1 + kDc + …)

with kD = 2B –kf – %2

like a second virial coefficient
for diffusion

partial molar volume 
of solute (polymer or
micellar colloid)



Virial Coefficient
• Driving force  =
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Multiple Scattering

single scattering multiple scattering

•Three approaches

• Experimentally thin the sample or reduce contrast
• Correct for the effects experimentally
• Exploit it!



Diffusing Wave Spectroscopy (DWS)
• In an intensely scattering solution, the light is 

scattered so many times the progress of the light is 
essentially a random walk or diffusive process

• Measure in transmission or backscattering mode

• Probes faster times than QLS

• See Pine et al.  J. Phys. France 51 (1990) 2101-2127



Summary
Oriented particles create interference patterns, each bright spot being a speckle.  
The speckle pattern moves as the particle move, creating flickering.

All the motions and measurements  are described by correlations functions
• G2(!)- intensity correlation function describes particle motion
• G1(!)- electric field correlation function describes measured fluctuations
Which are related to connect the measurement and motion

Analysis Techniques:
• Treatment for monomodal distributions: linear and cumulant fits
• Treatment for non-monomodal distributions: Contin fits
• Interactions, polydispersity, require careful modeling to interpret

Other motions, such as rotation, can be measured
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