Dynamic Light Scattering (aka QLS, PCS)

Oriented particles create interference patterns, each bright spot being a speckle. The speckle pattern moves as the particle move, creating flickering.

All the motions and measurements are described by correlations functions

- $G_2(\tau)$ intensity correlation function describes particle motion
- $G_1(\tau)$ electric field correlation function describes measured fluctuations

Which are related to connect the measurement and motion

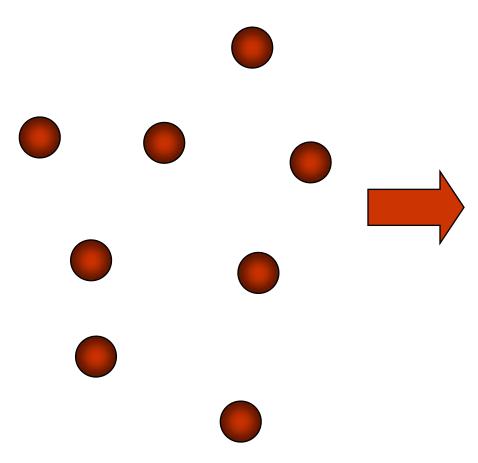
$$G_2(\tau) = B\left[1 + \beta \left|g_1(\tau)\right|^2\right]$$

Analysis Techniques:

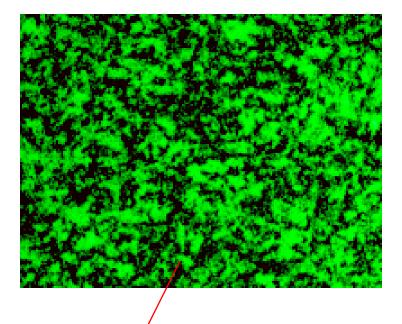
- Treatment for monomodal distributions: linear and cumulant fits
- Treatment for non-monomodal distributions: Contin fits

It is also possible to measure other motions, such as rotation.

Particles behave like 'slits', the orientation of which generates interference patterns

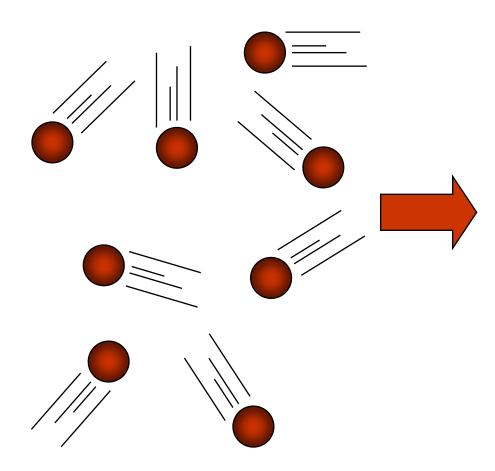


Generates a 'speckle' pattern

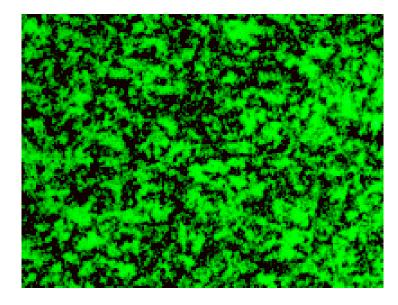


Various points reflect different scattering angles

Movement of the particles cause fluctuations in the pattern

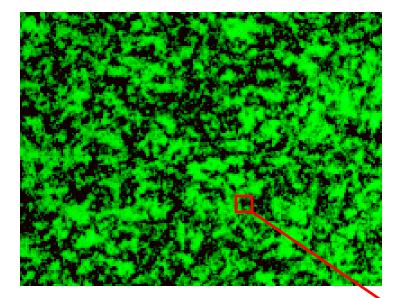


The pattern 'fluctuates'

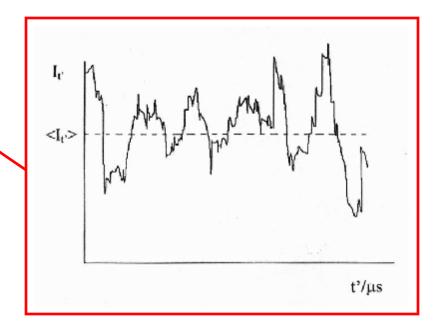


Movement is defined by the rate of fluctuation

Measure the intensity of one speckle



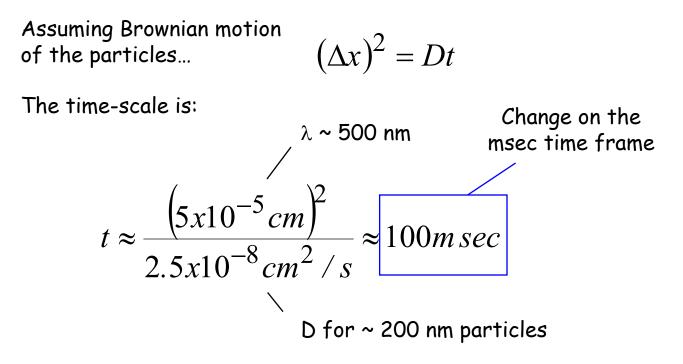
Experimentally, the intensity of one 'speckle' is measured



Order of magnitude for time-scale of fluctuations

fluctuations occur on the time-scale that particles move about one wavelength of light...

$$\Delta x \approx \lambda$$



How is the time scale of the fluctuations related to the particle movement?

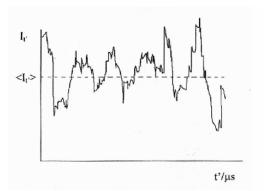
Requires several steps:

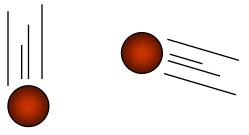
1. Measure fluctuations an convert into an Intensity Correlation Function

2. Describe the correlated movement of the particles, as related to particle size into an Electric-Field Correlation Function.

3. Equate the correlation functions, with the Seigert Relationship

4. Analyze data using cumulants or CONTIN fitting routines





Sample I Operato Elapsed Mean Di Rel. Var Skew	r I.D. Time am.	Peter D	10	:70 (Co	mbine	3)			2007 2007 2007 2007 2007 2007 2007 2007
d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)	d(nm)	G(d)	C(d)	1
68.2	0	0	122.2	0	59	218.9	0	59	
71.9	0	0	128.9	0	59	230.9	0	59	
75.8	0	0	135.9	0	59	243.4	26	63	
80.0	0	0	143.3	0	59	256.7	44	72	
84.3	25	5	151.1	0	59	270.6	69	85	
88.9	61	16	159.3	0	59	285.4	49	94	
93.8	100	35	168.0	0	59	300.9	28	99	
98.9	80	50	177.1	0	59	317.3	4	100	
104.2	44	58	186.7	0	59	334.6	0	100	
109.9	2	59	196.9	0	59	352.8	0	100	
115.9	0	59	207.6	0	59	372.0	0	100	

Math/Theory

- Application/Optics
- Data Analysis

2 texts:

'Light scattering by Small Particles' by van de Hulst

'Dynamic Light Scattering with applications to Chemistry, Biology and Physics' by Berne and Pecora

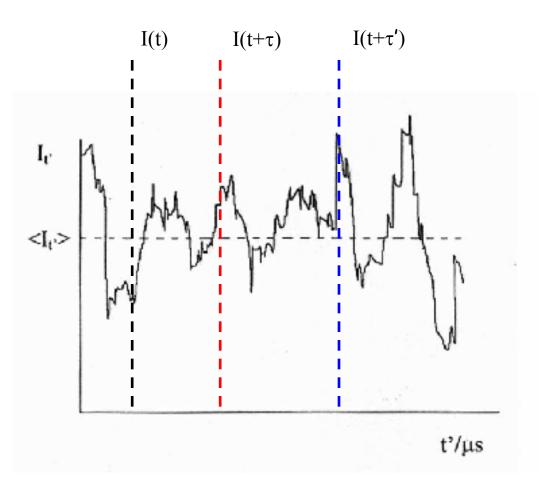
First, the Intensity Correlation Function, $G_2(\tau)$

Describes the rate of change in scattering intensity by comparing the intensity at time t to the intensity at a later time (t + τ), providing a quantitative measurement of the flickering of the light

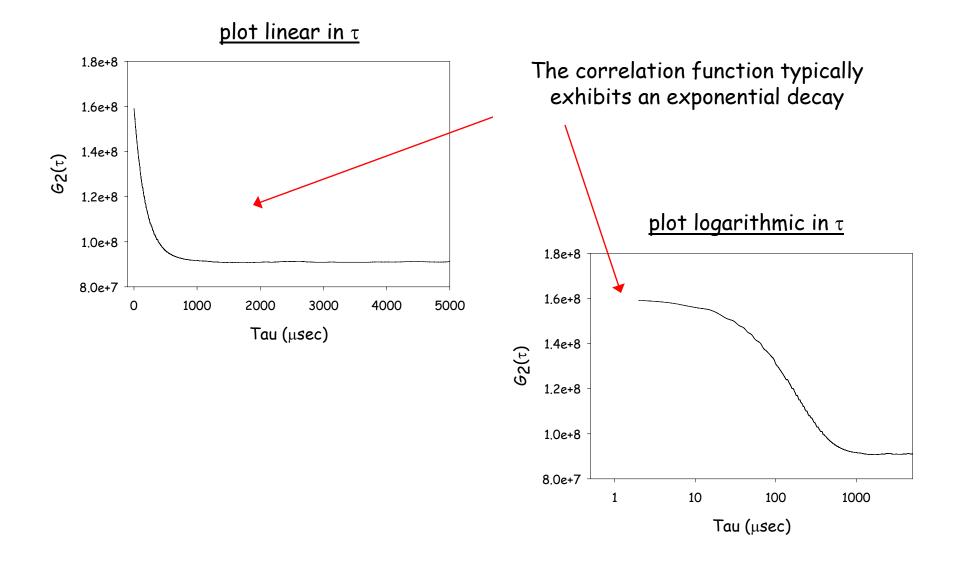
Mathematically, the correlation function is written as an integral over the product of intensities at some time and with some delay time, τ

$$G_2(\tau) = \frac{1}{T} \int_0^T I(t) I(t+\tau) d\tau$$

Which can be visualized as taking the intensity at I(t) times the intensity at $I(t+\tau)$ - red), followed by the same product at I(t+t')blue, and so on...



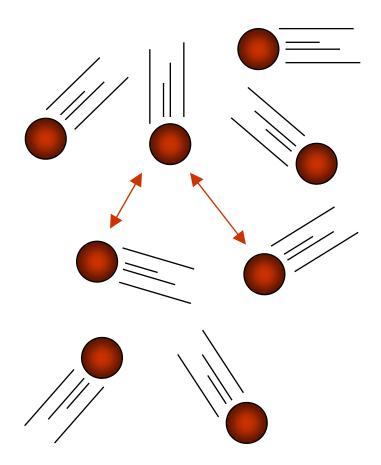
The Intensity Correlation Function has the form of an exponential decay



Second, Electric Field Correlation Function, $G_1(\tau)$

It is Not Possible to Know How Each Particle Moves from the Flickering

Instead, we correlate the motion of the particles relative to each other



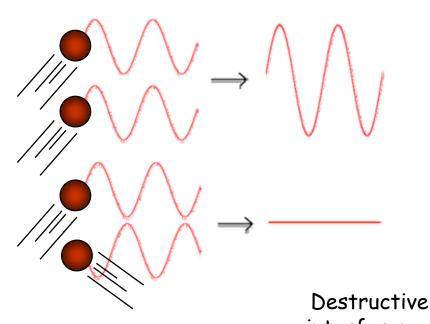
Integrate the difference in distance between particles, assuming Brownian Motion

The electric field correlation function describes correlated particle movement, and is given as:

$$G_1(\tau) = \frac{1}{T} \int_0^T E(t) E(t+\tau) d\tau$$

 $G_1(t)$ decays as and exponential with a decay constant Γ , for a system undergoing Brownian motion

$$G_1(\tau) = \exp^{-\Gamma \tau}$$



interference

Constructive

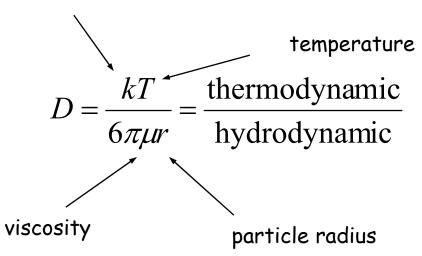
The decay constant is re-written as a function of the particle size

The decay constant is related by Brownian Motion to the diffusivity by:

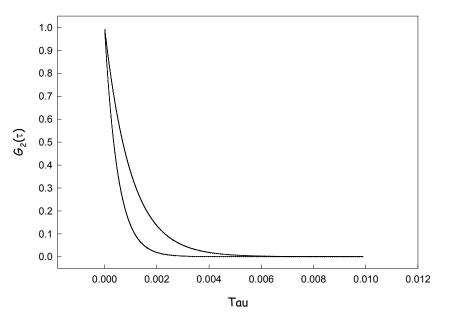
$$\Gamma = -Dq^2$$
 $q = \frac{4\pi n}{\lambda} sin\left(\frac{\theta}{2}\right)$

with q^2 reflecting the distance the particle travels ... and the application of Stokes-Einstein equation

Boltzmann Constant

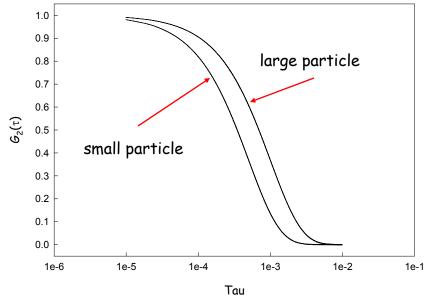


Rate of decay depends on the particle size



large particles diffuse slower than small particles, and the correlation function decays at a slower rate.

and the rate of other motions (internal, rotation...)

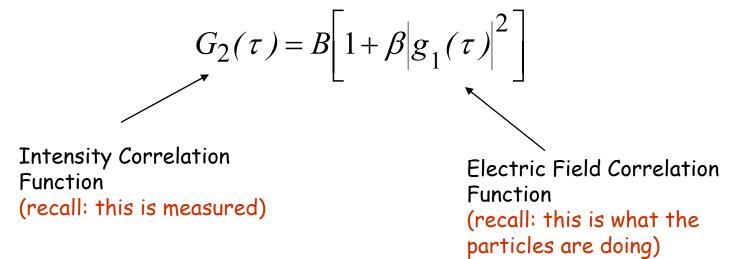


Finally, the two correlation function can be equated using the Seigert Relationship

Based on the principle of Guassian random processes - which the scattering light *usually* is

The Seigert Relationship is expressed as:

Intensity I = $\left|\overline{E}\right|^2 = E * E^*$



where B is the baseline and $\boldsymbol{\beta}$ is an instrumental response, both of which are constants

• $G_2(\tau)$ intensity correlation function measures change in the scattering intensity

• $G_1(\tau)$ electric field correlation function describes correlated particle movements

• The Seigert Relationship equates the functions connecting the measurable to the motions

$$G_2(\tau) = B\left[1 + \beta \left|g_1(\tau)\right|^2\right]$$

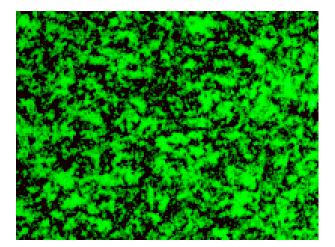
Math/Theory

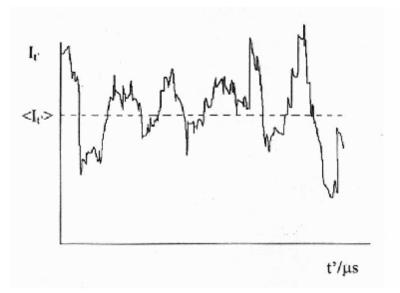
Application/Optics

• Data Analysis

So, consider a simple example of the process

Measure the intensity fluctuations from a dispersion of particles.





Commercial Equipment

- Need laser, optics, correlator, etc...
- Commercial Sources
 - Brookhaven Instruments
 - Malvern Instruments
 - Wyatt Instruments
 (multiangle measurements, HPLC detectors)
 - ALV (what we have)
- Costs range \$50K to \$100K

Instrumental Considerations

- Light Source
 - Monochromatic, polarized and continuous (laser)
 - Static light scattering goes as 1/1⁴, suggests shorter wavelengths give more signal
 - typical Ar⁺ ion laser at 488 nm
 - Dynamic light scattering S/N goes as λ, while detector sensitivity goes as 1/λ, so wavelength is not too critical.
 HeNe lasers are cheap and compact, but weaker (λ = 633 nm)
 - Power needed depends on sample (but there can be heating!)
 - Calculation of G(T) depends on two photons, and so on the power/area in the cell. Typically focus the beam to about 200 μm
 - Sample can be as small as 1 mm in diameter and 1 mm high. Typical volumes 3-5 ml.

Instrument Considerations

- Need to avoid noise in the correlation functions
 - Dust!
 - Usually adds an unwanted (slow) component
 - See in analysis some software help
 - AVOID by proper sample preparation when possible
 - Poisson Noise
 - counting noise, decreases with added counts, important to have enough counts; typically 10⁷ over all with 10⁶ at baseline
 - Stray light
 - adds an unwanted heterodyne component (exp (- Γ) instead of exp (-2 Γ). Avoid with proper design

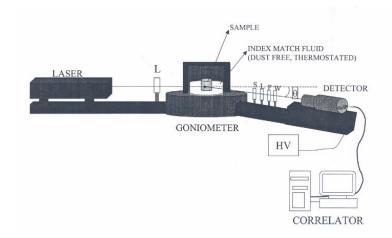
Correlators

• Need to calculate $G_2(\tau) = \frac{1}{T} \int_0^T I(t) I(t+\tau) d\tau$

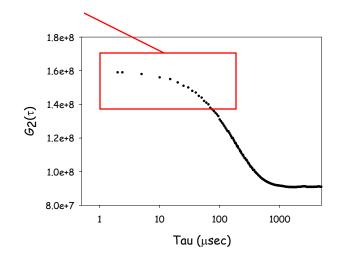
which is approximated by $G_2(\tau) \approx \frac{1}{N} \sum_{i=1}^{N(large)} I(t_i) I(t_i + \tau)$

- so calculate by recording I(t) and sequentially multiplying and adding the result. To do in real time requires about ns calculations thus specialized hardware
- Pike 1970s (Royal Signals and Radar Establishment, Malvern, England)
- Langley and Ford (UMASS) \Rightarrow Brookhaven
- 1980's Klaus Schatzel, Kiel University \Rightarrow ALV

Autocorrelation function is collected



Each point is a different τ .



The auto-correlator collects and integrates the intensity at the different delay times, τ , all in real time

<u>τ (μsec)</u>

2.000000000E+000	1.593461120E+008
2.400000095E+000	1.590897440E+008
5.00000000E+000	1.582029760E+008
1.000000000E+001	1.564198880E+008
1.500000000E+001	1.546673760E+008
2.000000000E+001	1.529991520E+008
2.500000000E+001	1.513296000E+008
3.000000000E+001	1.497655360E+008
3.500000000E+001	1.482144000E+008
4.000000000E+001	1.466891040E+008
4.500000000E+001	1.452316800E+008
5.000000000E+001	1.438225120E+008

•••

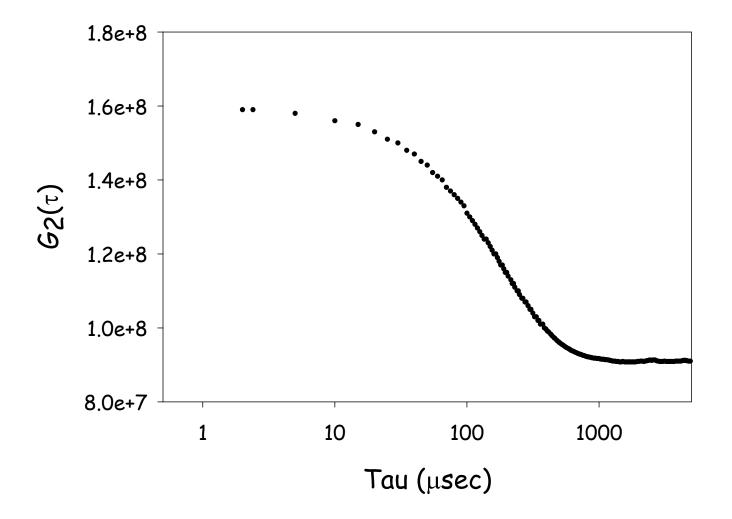
6.00000000E+00

4 9.100139200E+007

 $\underline{G_2(\tau)}$

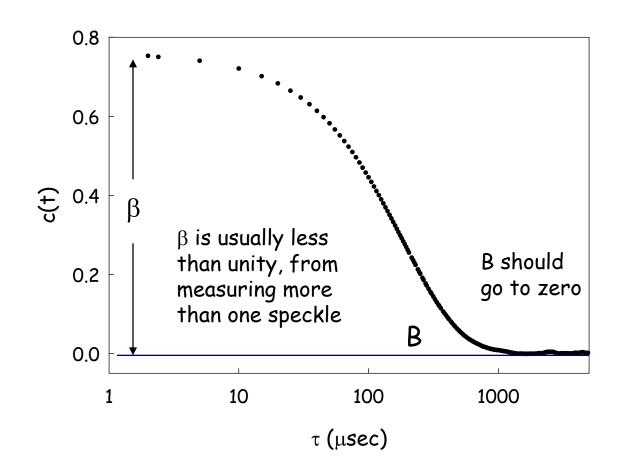
... then, create the raw correlation function

Evaluate the autocorrelation function from the intensity data

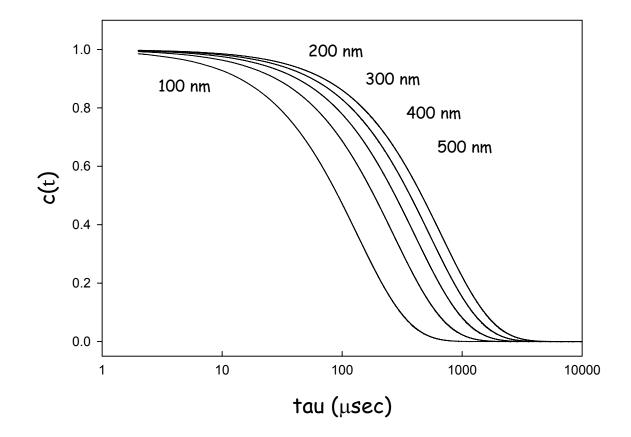


... then, normalize the raw correlation function through some simple re-arrangements

$$C(\tau) = \frac{G_2(\tau) - B}{B} = \beta e^{-2\Gamma\tau}$$



General principle: the measured decay is the *intensity-weighted* sum of the decay of the individual particles



Recall that different size particles exhibit different decay rates.

Expressed in mathematical terms

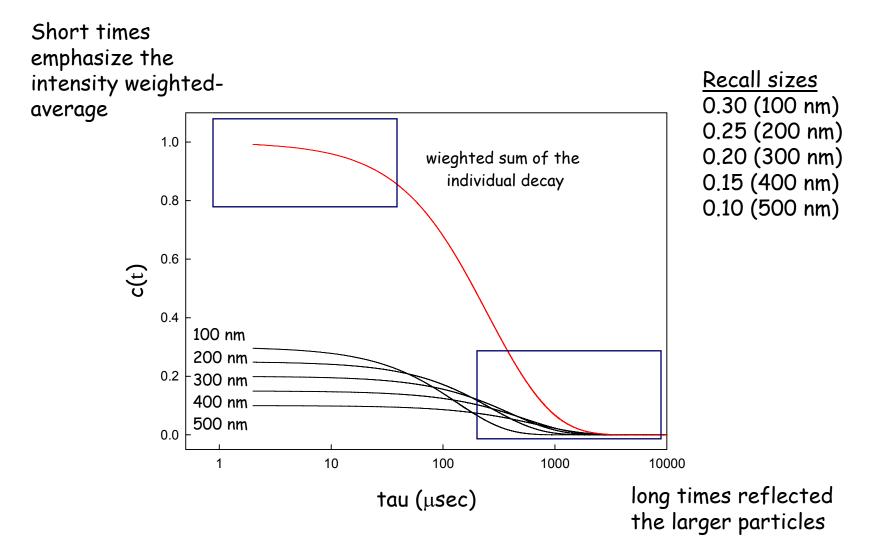
 $g_1(\tau)$ can be described as the movements from individual particles; where $G(\Gamma)$ is the intensity-weighted coefficient associated with the amount of each particle.

$$g_1(\tau) = \sum_i G_i(\Gamma) e^{-\Gamma_i \tau}$$

For example, consider a mixture of particles:

0.30 intensity-weighted of 100 nm particles, 0.25 intensity-weighted of 200 nm particles, 0.20 intensity-weighted of 300 nm particles, 0.15 intensity-weighted of 400 nm particles, 0.10 intensity-weighted of 500 nm particles.

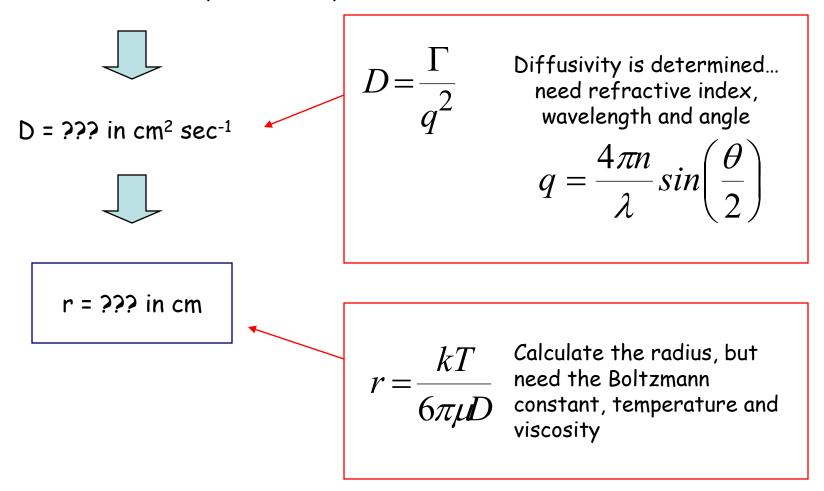
A sample correlation function would look something like this...



- Math/Theory
- Application/Optics
- Data Analysis

Finally, calculate the size from the decay constant

 Γ = ??? in sec⁻¹ (experimentally determined)



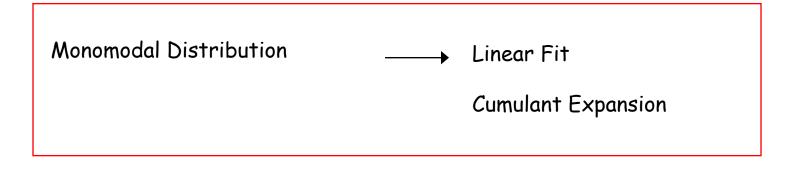
What is left? Need a systematic way to determine Γ 's

the distribution of particle sizes defines the approach to fitting the decay constant

Monomodal Distribution	 Linear Fit Cumulant Expansion
Non-Monomodal Distribution	 Exponential Sampling CONTIN regularization

What is left? Need a systematic way to determine Γ 's

First, consider the monomodal distribution, where the particles have an average mean with a distribution about the mean (red box, first)



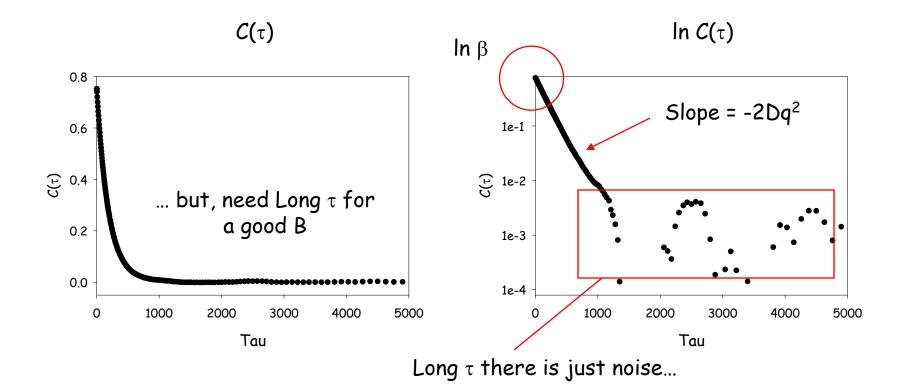
Non-Monomodal Distribution — Exponential Sampling

CONTIN regularization

Simplest- the 'basic' linear fit

Assumes that all the particles fall about a relatively tight mean

$$ln\left(\frac{G_2(\tau)-B}{B}\right) = ln\beta - 2q^2 D\tau$$



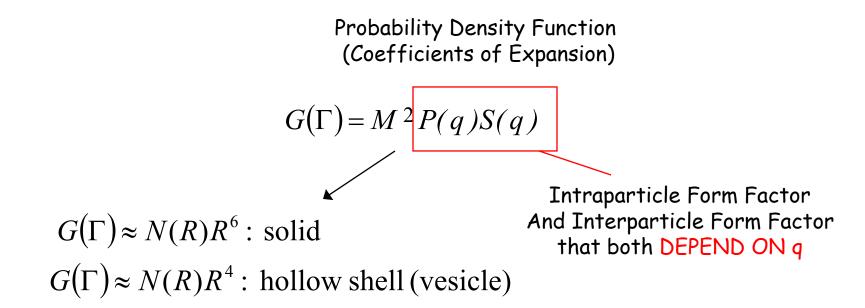
Cumulant expansion

Assumes that the particles distribution is centered on a mean, with a Gaussian-like distribution about the mean.

Where to start...

$$g_1(\tau) = \int_{0}^{\infty} G(\Gamma) e^{-\Gamma \tau} d\Gamma \quad \longleftarrow \quad \text{Integral sum of decay curves}$$

Larger particles are 'seen' more...



Then, re-arrange the Seigert Relationship in terms of a cumulant expansion

Recall that the correlation function can be expressed as

$$ln c(\tau) = ln \left[\frac{G_2(\tau) - B}{B} \right] = ln \beta - 2 ln g_1(\tau)$$

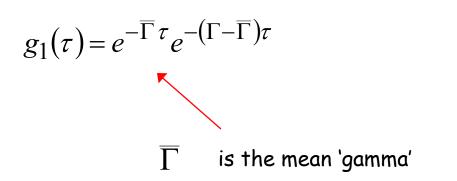
Cumulant expansion is a rigorous defined tool of re-writing a sum of exponential decay functions as a power series expansion... so, that the sum from the previous page is replaced by the expansion (GET BACK HERE IN A FEW MINUTES)

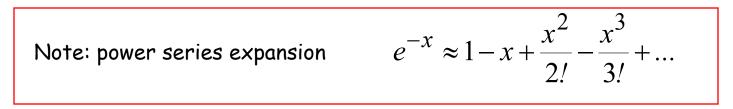
$$g_1(\tau) = \int_0^\infty e^{i\Gamma\tau} P(\Gamma) d\Gamma \qquad ln g_1(\tau) = \sum_{n=0}^\infty k_n \frac{(i\tau)^n}{n!} = \int_0^\infty k_n \frac{(i\tau)^n}{n!} d\tau$$

http://mathworld.wolfram.com/cumulant.html

... need to carry through some mathematics

First, define a mean value





Second, substitute the power series for the difference term (second term)

$$g_1(\tau) = \int_0^\infty G(\Gamma) e^{-\Gamma \tau} d\Gamma = \int_0^\infty G(\Gamma) e^{-\overline{\Gamma} \tau} \left[1 - (\Gamma - \overline{\Gamma}) \tau + \frac{(\Gamma - \overline{\Gamma})^2}{2!} \tau - \dots \right] d\Gamma$$

Cumulant Expansion (more)

$$g_1(\tau) = \int_0^\infty G(\Gamma) e^{-\Gamma \tau} d\Gamma = e^{-\overline{\Gamma} \tau} \int_0^\infty G(\Gamma) \left[1 - (\Gamma - \overline{\Gamma}) \tau + \frac{(\Gamma - \overline{\Gamma})^2}{2!} \tau - \dots \right] d\Gamma$$

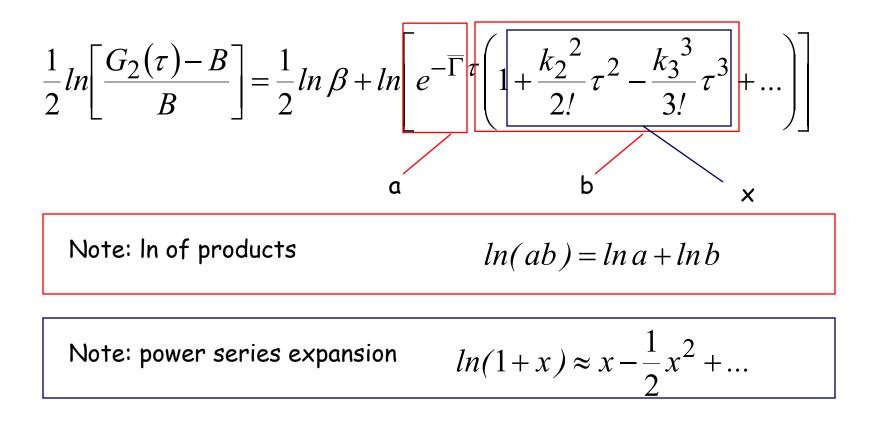
Working through the integrals...

$$g_1(\tau) = e^{-\overline{\Gamma}\tau} \left(1 - 0 + \frac{k_2^2}{2!}\tau^2 - \frac{k_3^3}{3!}\tau^3 + \dots \right)$$

Such that k_2 is the second moment, k_3 is the third moment, ...

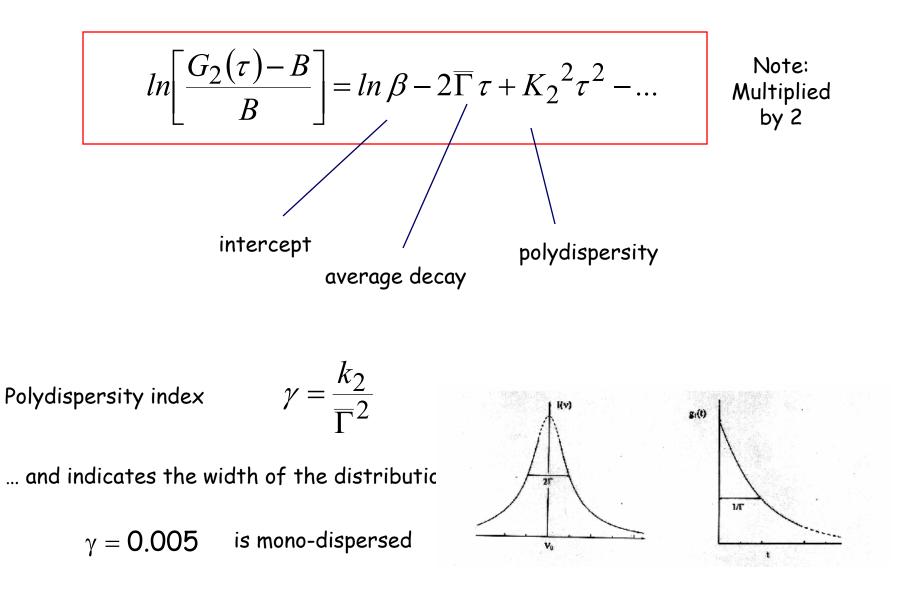
$$k_2 = \int_0^\infty G(\Gamma)(\Gamma - \overline{\Gamma})^2 d\Gamma \qquad \qquad k_3 = \int_0^\infty G(\Gamma)(\Gamma - \overline{\Gamma})^3 d\Gamma$$

Cumulant Expansion (even more)



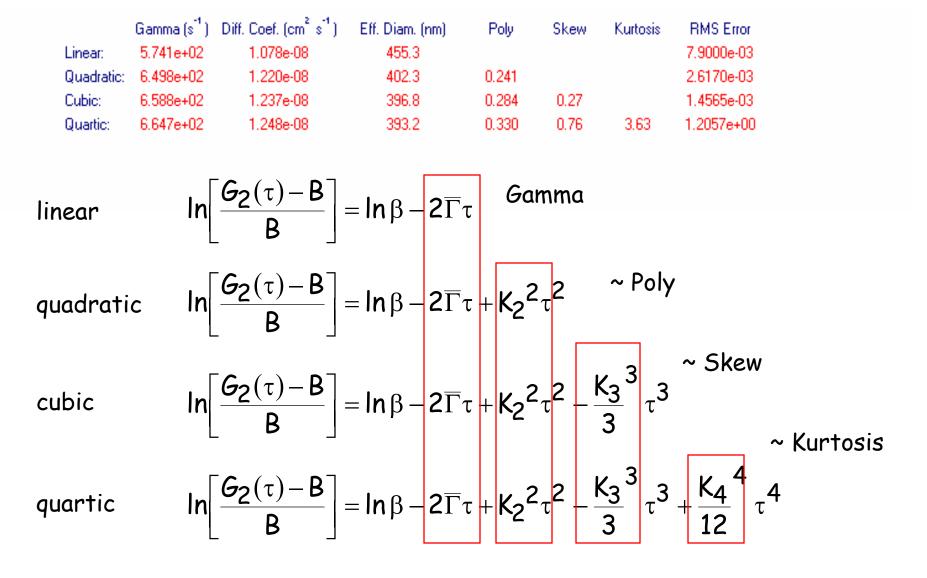
Note that x terms $\gg x^2$ terms, so that x^2 are negligible

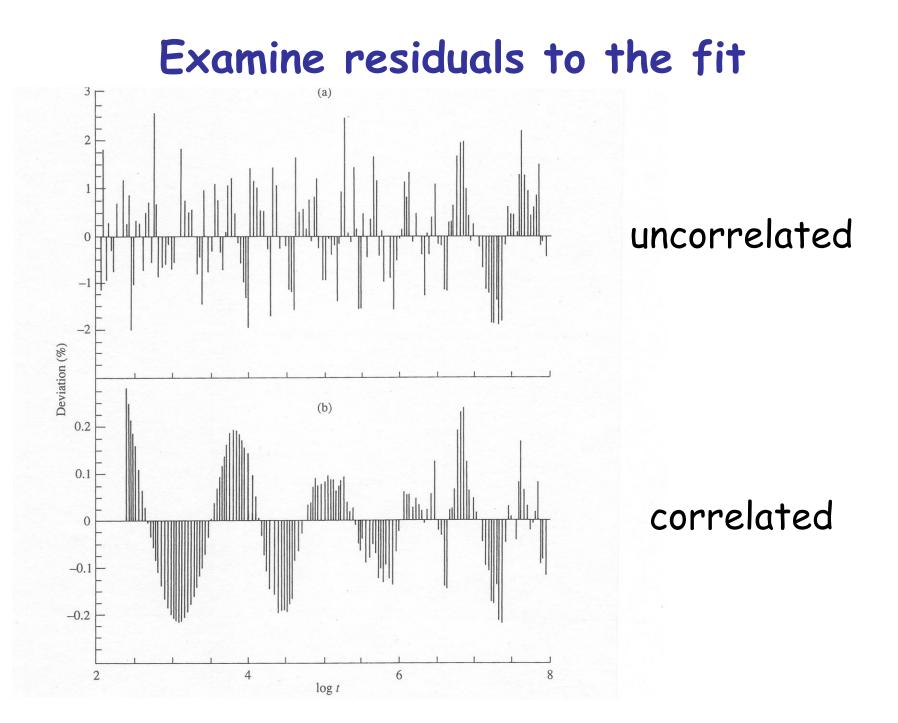
Cumulant Expansion (more...)



Sample of Cumulant Expansion

390 nm Beads





What is left? Need a systematic way to determine Γ 's

Second, consider the different non-monomodal distribution, where the particles have a distribution no longer centered about the mean (red box, next)

Monomodal Distribution	Linear Fit
------------------------	------------

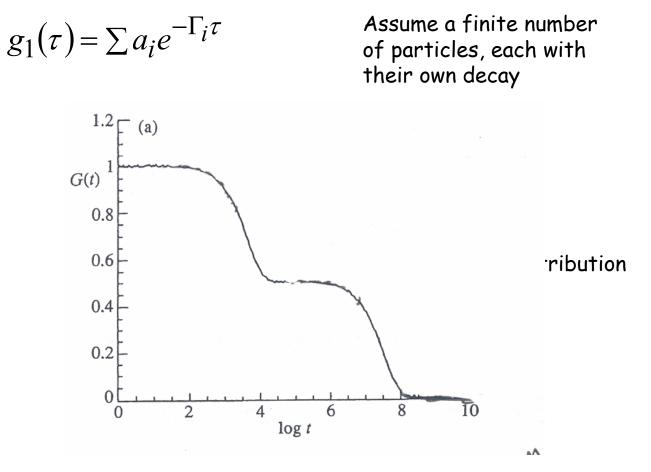
Cumulant Expansion

Non-Monomodal Distribution — Exponential Sampling

CONTIN regularization

Multiple modes because of polydispersity, internal modes, interactions... all of what make the sample interesting!

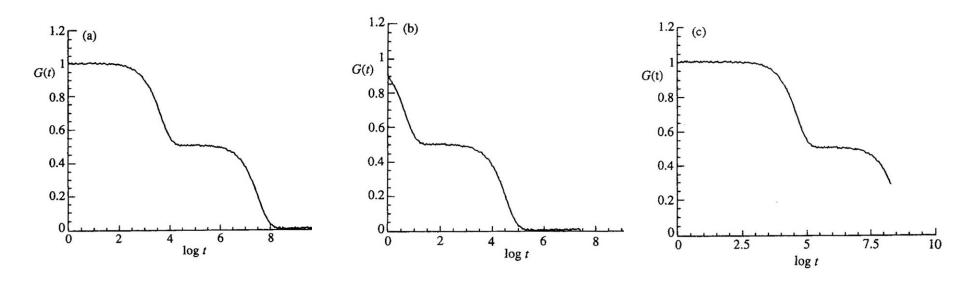
Exponential Sampling for Bimodal Distribution



To be reliable the sizes must be ~5X different

Pitfalls

Correlation functions need to be measured properly



a) Good measurements with appropriate delay times

- b) Incomplete, missing the early (fast) decays
- c) Incomplete, missing the long time (slow) decays

CONTIN Fit for Random Distribution

Laplace Transform of f(†)

$$F(s) = L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt$$

Note: Fourier Transform

$$G(\omega) = \Im[f(t)] = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$$

In light scattering regime.

size distribution function

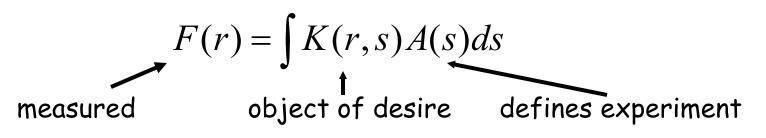
$$g_1(\tau) = L[G(\Gamma)] = \int_0^\infty e^{-\Gamma \tau} G(\Gamma) d\Gamma$$

So, to find the distribution function, apply the inverse transformation which is done by numerical methods, with a combination of minimization of variance and regularization (smoothing).

$$G(\Gamma) = L^{-1}[g_1(\tau)]$$

CONTIN

- Developed by Steve Provencher in 1980's
- Recognize that $g_1(\tau) = L[G(\Gamma)] = \int_0^\infty e^{-\Gamma \tau} G(\Gamma) d\Gamma$
- is an example of a "Fredholm Integral" where



This is a classic ill-posed problem – which means that in the presence of noise many DIFFERENT sets of A(s) exist that satisfy the equation

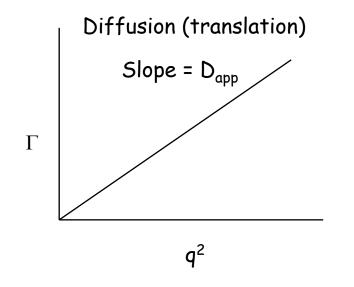
CONTIN (cont.)

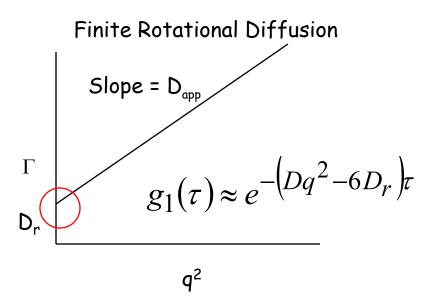
So how to proceed?

- 1. Limit information i.e., be satisfied with the mean value (like in the cumulant analysis)
- 2. Use *a priori* information
 - Non-negative $G(\Gamma)$ (negative values are not physical)
 - Assume a form for $G(\Gamma)$ (like exponential sampling)
 - Assume a shape
- 3. Parsimony or regularization
 - Take the smoothest or simplest solution
 - Regularization (CONTIN)
 ERROR = (error of fit) +function of smoothness (usually minimization of second derivative)
 - Maximum entropy methods (+ p log (p) terms)

Analysis of Decay Times

First question: How do decay times vary with q?

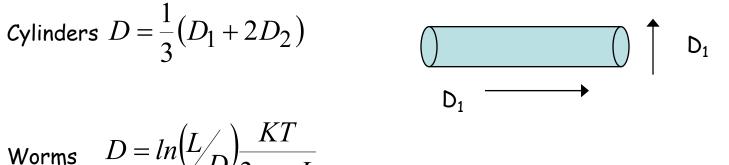




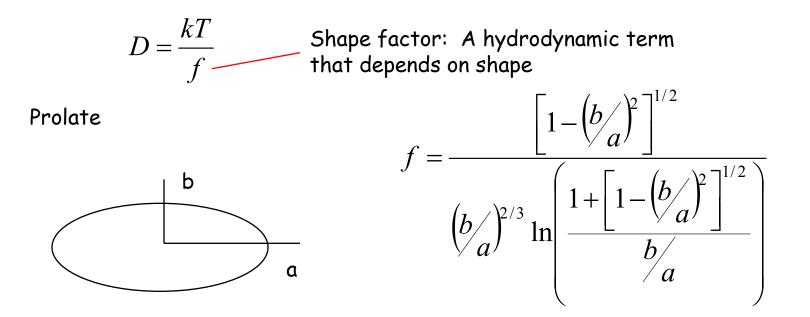
 Γ = $D_{app}q^2$ where D_{app} is a collective diffusion coefficient that depends on interactions and concentration

Rotational diffusion can change the offset of the decay - can also observe with *depolarized* light

Not spheres... but still dilute, so D = kT/f



$$Worms \quad D = ln \left(\frac{L}{D} \right) \frac{KT}{3\pi\eta_o L}$$



Concentration Dependence

- In more concentrated dispersions (and can only find the definition of 'concentrated' generally by experiment'), measure a proper D_{app} , but because of interactions D_{app} (c)
- Again, D = <thermo>/<fluid> = $kT(1 + f(B) + ...)/f_o(1 + k_fc + ...)$

So
$$D_{app} = D_0 (1 + k_D c + ...)$$

like a second virial coefficient
for diffusion
with $k_D = 2B - k_f - v_2$
partial molar volume
of solute (polymer or
micellar colloid)

Virial Coefficient

• Driving force = $\left(\frac{\partial \Pi}{\partial \rho}\right)_T = kT[1 + 4\pi\rho\int drr^2(g(r) - 1]^{-1}]$

at low density

$$\approx \mathrm{kT}[1 - 4\pi\rho \int (\mathrm{g}(\mathrm{r}) - 1)\mathrm{r}^2 dr + ...]$$

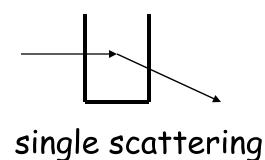
so for low density

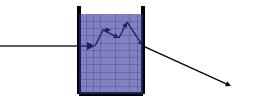
$$\left(\frac{\partial \Pi}{\partial \rho}\right)_T \approx kT[1+\rho B_2 + ...]$$

where

$$\mathbf{B}_2 = -4\pi \int (g(r) - 1)r^2 dr$$

Multiple Scattering





multiple scattering

- •Three approaches
 - Experimentally thin the sample or reduce contrast
 - Correct for the effects experimentally
 - Exploit it!

Diffusing Wave Spectroscopy (DWS)

- In an intensely scattering solution, the light is scattered so many times the progress of the light is essentially a *random walk* or *diffusive* process
- Measure in transmission or backscattering mode
- Probes faster times than QLS
- See Pine et al. J. Phys. France 51 (1990) 2101-2127

Summary

Oriented particles create interference patterns, each bright spot being a speckle. The speckle pattern moves as the particle move, creating flickering.

All the motions and measurements are described by correlations functions

• $G_2(\tau)$ - intensity correlation function describes particle motion

• $G_1(\tau)$ - electric field correlation function describes measured fluctuations Which are related to connect the measurement and motion

$$G_2(\tau) = B\left[1 + \beta \left|g_1(\tau)\right|^2\right]$$

Analysis Techniques:

- Treatment for monomodal distributions: linear and cumulant fits
- Treatment for non-monomodal distributions: Contin fits
- Interactions, polydispersity, require careful modeling to interpret

Other motions, such as rotation, can be measured