Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants†

Olaf Wagner,a Julian Thiele,‡b Marie Weinhart,a Linas Mazutis,c David A. Weitz,c Wilhelm T. S. Huckb and Rainer Haag*a

In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear perfluorinated oils offer further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

Introduction

Droplet-based microfluidics has attracted much attention since the first monodisperse droplets were produced inside microfluidic polyurethane chips in 2001.1 This technology is based on production of pico- to nano-liter volume droplets at high throughput rates (typically 1–10 kHz) and their subsequent manipulation in an automated or semi-automated manner. The small droplet size greatly reduces reagent volumes and provides a powerful tool for single gene, cell, or organism isolation and analysis.2–7

To make this technology applicable, cross-contamination between droplets should be minimized or eliminated completely. The use of fluorocarbon oils as a continuous phase is advantageous as it provides hydrophobic and lipophobic properties8 thus significantly reducing the solubility of biochemical compounds and their diffusion between flowing droplets. Furthermore, perfluorinated fluorocarbon oils exhibit high gas solubility, which is important for cell survival in droplets,9 and they cause less swelling of microchannels in PDMS-based microfluidic devices than hydrocarbon oils.10

Since preventing droplet coalescence is crucial for any droplet-based application, surfactants are used to provide droplet stability.11 The degree to which the surfactant organizes at the interface between the immiscible water and fluororous oil phases, such as in a water-in-oil (W/O) emulsion, can be quantified by its reduction of the interfacial tension at the oil water interface, γcmc, where CMC is the critical micellar concentration.12 Efficient surfactants in droplet microfluidics reduce γcmc of a fluororous oil/water mixture below 20 mN m⁻¹.13

In addition to the surfactant’s interfacial activity, steric repulsion prevents droplet coalescence.11 Oligomeric perfluoropolyethers (PFPEs), when used as large hydrophobic building blocks of copolymer surfactants, were found to be soluble in fluorocarbon oils and sufficiently large to provide good steric stabilization by forming a dense PFPE layer on the outer droplet surface.14

Poly(perfluoropropylene glycol)-carboxylates, commercially available as “Krytox®” by DuPont®, have emerged as a standard PFPE moiety. However, the charged carboxylate group of Krytox interacts with oppositely charged biomolecules, which causes the encapsulated biomacromolecules to lose their activity and agglomerate at the droplet interface.15

‡ Current address: Dr. Julian Thiele, Department of Nanostructured Materials and Leibniz Research Cluster (LRC), Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany. E-mail: thiele@ipfdd.de

DOI: 10.1039/c5lc00823a
www.rsc.org/loc

Received 14th July 2015,
Accepted 24th November 2015

This journal is © The Royal Society of Chemistry 2016
Consequently, the carboxylic head group has to be substituted with different nonpolar hydrophilic head groups such as the ammonium salt of carboxy-PFPE, poly-L-lysine, dimorpholinophosphate, and poly(ethylene glycol) (PEG).16 The ammonium salt and poly-L-lysine causes cell lysis, while the latter two performed well. The block copolymer of PEG and perfluoropolyether was further optimized by Holtze et al. who produced a number of PEG–PFPE2 surfactants from PEG and PFPE chains of different lengths. The combination of 600 g mol\(^{-1}\) PEG with 6000 g mol\(^{-1}\) PFPE performed best in droplet formation and long-term droplet stability.17,18

The reduced protein adsorption of this non-ionic surfactant with molecular weights usually ranging from 2000–13 000 g mol\(^{-1}\) has been used to screen enzymes,19,20 mammalian cells,6,21–23 bacteria,24 and viruses in microdroplets.25 Its biocompatibility is attributed to the PEG-block forming a biologically inert interior surface in the water droplets.

PEG–PFPE2 triblock copolymers appear to be the most applied surfactants in fluorous droplet microfluidics nowadays. They are commercially available26 or synthesized from Krytox and amino-functionalized polyethers.

However, the PEG block in between the PFPEs as a hydrophilic moiety offers very limited opportunity for further chemical modification. While custom-made surfactant molecules have been used, for instance, to create droplet interfaces for controlled immobilization27 and to promote chemical reactions28 or protein crystallization by functional hydrophilic moieties, one can only vary the molecular weight of PEG in PEG–PFPE2.29

Polyglycerols represent a class of biocompatible and multifunctional polymeric surfactants that may be considered as a multifunctional analog of PEG.30,31 Recently, we introduced a novel class of biocompatible surfactant coating32,33 as an alternative to PEG. Linear polyglycerol (LPG) derivatives form resistant layers to inhibit the uncontrolled adsorption of fibrinogen, pepsin, albumin, and lysozyme and showed even less adsorption of human plasma protein than a PEG-modified surface. Additionally, cell adhesion experiments on linear polyglycerol LPG(OH) and poly(methyl glycerol) LPG(OMe) modified surfaces showed a similar cell resistance to that of a PEG-modified surface.

Therefore we employed LPG(OMe) and LPG(OH) as a building block in a triblock copolymer and introduced LPG-based triblock copolymers as a new class of microfluidic fluorosurfactants. The linear polyglycerol block of the LPG–PFPE2 triblock surfactant allows for side-chain functionalization, while maintaining biocompatibility, as shown by performing gene expression and cell encapsulation in surfactant-stabilized W/O microdroplets.

Results

Surfactant characterization

The structure of a nonionic surfactant molecule is defined by its molecular weight, hydrophilic–lipophilic balance (HLB) and geometry. All three were chosen to be the same for the new polyglycerol-based surfactants compared to the optimized PEG-based surfactant for microfluidic applications.19,28 In order to improve the polarity gradient and the biocompatibility we replaced the 1 kDa polyethylene glycol (PEG) hydrophilic center of the triblock copolymer by linear polyglycerol with either a hydroxy (LPG(OH)) or methoxy (LPG(OMe)) side chain as shown in Fig. 1.

The degree to which the surfactant organizes at the interface between the water droplet and the fluororous oil in the microfluidic device can be quantified by the reduction of the interfacial tension (\(\gamma_{\text{oil-water}}\)) between the two phases. The interfacial tension \(\gamma_{\text{CMC}}\) at the critical micelle concentration (CMC), was determined by the pendant drop method shown in Fig. S2 in the ESI.†

The \(\gamma\) of 54.8 ± 0.4 mN m\(^{-1}\) between de-ionized water and fluorinated oil (HFE7500 3M) was reduced by at least 25 mN m\(^{-1}\) when any of the three surfactants was added to the oil. The PEG triblock copolymer showed the lowest \(\gamma_{\text{CMC}}\) of 4.2 mN m\(^{-1}\), which is in agreement with previous studies.34 The LPG(OMe) triblock copolymer showed a similar trend with \(\gamma_{\text{CMC}} \approx 18.8\) mN m\(^{-1}\). The determined CMC values were similar for both surfactants (Table 1). We further validated the CMC values using the aggregate count rate of dynamic light scattering measurements. This method can be used to measure the critical aggregation concentration as well as the size of the formed aggregates as shown in Fig. S3.† The two methods showed close agreement of the obtained CMC values in the range of 0.01–0.05 wt% summarized in Table 1. Unfortunately, it was impossible to reliably interpret the surface tension data with LPG(OH) triblock surfactant due to a high variance of measurement points. Compared to LPG(OMe) surfactants, the higher polarity of poly(hydroxyl glycerol) in the LPG(OH) surfactant seems to cause uncontrolled agglomeration induced by hydrogen bonds, which leads to a lower free surfactant concentration and therefore a lower surface activity. The uncontrolled agglomeration at different time points and sample concentrations may be the reason for the high variances of the interfacial tension measurement of LPG(OH)–PFPE2.

High molecular weight surfactants generally provide steric stabilization at the interface and exhibit very low CMC. Therefore a very low surfactant concentration is required for
Droplet stability and permeability

The droplet formation inside a microfluidic channel is shown in Fig. 2A. During droplet formation both polyglycerol-based surfactants prevented the droplets from coalescing upon contact with each other. Fig. 2B shows the stored droplets in a hexagonal arrangement indicating their monodisperse size distribution and therefore the absence of coalesced bigger droplets on a longer time scale.

To further test the mechanical stability of our emulsions, samples of surfactant stabilized droplets were collected on a glass slide under a brightfield microscope and deformed by a microneedle. An emulsion was considered to be stable if it remained monodisperse and deformed droplets did not coalesce. While LPG(OH) surfactant coalesced under the mechanical stress of the needle tip, LPG(OMe) surfactant produced mechanically stable emulsions shown in the image sequence in Fig. S5 in the ESI†.

Biocompatibility with DNA and cells

A key application of microdroplets is the encapsulation and analysis of simple biological samples like proteins, enzymes and DNA as well as the compartmentalization of complex biological functions including microtubule formation, biochemical oscillators, and gene expression machinery.27,40–42
The spatial barrier for encapsulated samples is created by the surfactant ordered at the droplet interface as shown in Fig. 2C. Previous studies have indicated that the surfactant chemistry influences biocompatibility and non-specific biomolecule adsorption at the droplet interface, in particular.15,16

The biochemical process of \textit{in vitro} transcription/translation (IVTT) expressing proteins from DNA was chosen to test our surfactants. An operating gene expression machinery contains DNA, mRNA, proteins, cell lysate extract, buffer, energy regeneration system, amino acids, and nucleoside triphosphates, which makes it ideally suited for investigating the biocompatibility of our surfactants as well as adsorption characteristics of biomolecules. We encapsulated a commercial IVTT kit (5Prime) in surfactant-stabilized W/O microdroplets at 2 wt% LPG(OMe)–PFPE\textsubscript{2} at 4 °C, collected the emulsion in a PDMS-based collection chamber, and warmed up the sample to room temperature on a confocal microscope to control the onset of mRNA production. The IVTT mixture contained plasmid encoding a green fluorescent protein (GFP), which allowed us to follow gene expression via fluorescence, as shown in Fig. 3A. After approximately 200 min, the IVTT-containing droplets showed significant increase in fluorescence due to the production of GFP, proving that the IVTT machinery was working. Moreover, all droplets exhibited homogeneous fluorescence and no protein accumulation at the droplet interface occurred, as shown in Fig. 3B. These results show the applicability of LPG(OMe)–PFPE\textsubscript{2} surfactant for IVTT in droplets.

To test the effect on cell survival of surfactant stabilized interfaces, we used three types of mammalian cell lines: 9e10, K562, and HeLa cells. Approximately 500–1000 cells were incubated overnight on fluorinated oil (HFE7500, 3M) containing 2 wt% of surfactant inside a 96-well microtiter plate at 37 °C and 5% CO\textsubscript{2}. In addition, we tested a surfactant mix containing traces of triethylamine or pyridine (originating from the synthesis step) that is supposed to enhance molecule adsorption at the droplet interface, in particular.15,16 We have developed a novel, non-ionic, polyglycerol-based fluorosurfactant that stabilizes aqueous droplets in fluorocarbon oil. The presented poly(methyl glycerol)–perfluoropolyether triblock surfactant stabilizes picoliter-scale droplets of water-in-oil emulsions. These individual compartments exhibit a polyglycerol interface created by the surfactant that keeps FITC-labeled dextran, as model cargo, inside without noticeable accumulation at the interface.

Furthermore this new highly bioinert surfactant supported the \textit{in vitro} expression of GFP inside droplets and proved to be biocompatible with mammalian cell lines, enabling IVTT and living cell assays for high-throughput analysis. A polyglycerol center in the triblock copolymer surfactant bearing methoxy as well as hydroxyl groups enables further side chain functionalization that could be used to create functional inner droplet surfaces in the future.

Conclusions

We have developed a novel, non-ionic, polyglycerol-based fluorosurfactant that stabilizes aqueous droplets in fluorocarbon oil. The presented poly(methyl glycerol)–perfluoropolyether triblock surfactant stabilizes picoliter-scale droplets of water-in-oil emulsions. These individual compartments exhibit a polyglycerol interface created by the surfactant that keeps FITC-labeled dextran, as model cargo, inside without noticeable accumulation at the interface.

Acknowledgements

This work was supported by the Freie Universität Berlin graduate school “Fluorine as a Key Element” (GRK 1582) funded by the German Science Foundation (DFG). JT was funded as a Feodor-Lynen fellow by the Humboldt Foundation from 2012 to 2014. LM acknowledges the support by Marie Curie International Outgoing Fellowship (300121). The work at Harvard University was supported by the NSF (DMR-1310266) the Harvard MRSEC (DMR-1420570) and DARPA (HR0011-11-C-0093). We thank our colleagues Dr. Ralph Sperling, Torsten Rossow.
Notes and references