Structure and Strength of Flocs of Precipitated Calcium Carbonate Induced by Various Polymers Used in Papermaking

Roger Gaudreault,*+‡§, Nicolas Di Cesare,† Theo G. M. van de Ven,‡ and David A. Weitz§

†Cascades Inc., Recherche et Développement, 471 Marie-Victorin, Kingsey Falls, Quebec Canada, J0A 1B0
‡Pulp & Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec Canada, H3A 2A7
§Harvard University, Pierce Hall 231, 29 Oxford Street, Cambridge, Massachusetts 20138, United States

ABSTRACT: Because of persistent economic pressure on cost reduction, inorganic fillers such as precipitated calcium carbonate (PCC) have become increasingly economically attractive in the papermaking process. The increase of filler level in paper can be achieved by adding it to pulp prior to the headbox, either as individual filler particles or as preaggregates, while maintaining paper strength and minimizing their negative impact. Consequently, the floc structure and strength of PCC aggregates was studied using flocculants and dry strength agents, using static light scattering/diffraction (SLS), real time fluorescent video imaging (RTFVI), image analysis, photometric dispersion analysis (PDA), and scanning electron microscopy (SEM). It was found that PEO/cofactor induced PCC aggregates were weaker at high shear and far more irreversible than those induced by the partially hydrolyzed polyvinyl formamide copolymerized with acrylic acid (PVFA/NaAA) or cationic starch. Flocs produced at low polymer dosages were smaller and weaker than those produced at higher dosages. The number of discrete PCC particles in aggregates was measured using real time fluorescent video imaging combined with image analysis. Finally, we speculate that when two calcenohedral crystal type PCC particles aggregate, there is a small effective surface area to bind them, mainly through classical bridging or charge neutralization flocculation. Moreover, additional polymer adsorption results in higher coverage of the external and internal surfaces and prevents further aggregation due to electrostatic repulsion.

INTRODUCTION

Because of persistent economic pressure on cost reduction, additives other than cellulose fibers, such as inorganic fillers, have become increasingly attractive components in the papermaking process. Typical filler addition levels range from 3% to 30%.1 While most fillers are naturally occurring minerals, others are manufactured or engineered using chemical processes. The most common inorganic fillers are1 kaolin clay, calcium carbonate, titanium dioxide, talc, silica, and silicate. These fillers are generally divided into two categories: (1) mineral fillers that are cheaper than fiber (regular and delaminated clays, ground calcium carbonates (GCC), precipitated calcium carbonates (PCC) and talc) and (2) specialty fillers that are more expensive than fiber and are used for more specific purposes (titanium dioxide, precipitated silica, silicates, as well as structured clays).1 PCC is produced in calcenohedral, rhombohedral, and needle shaped or aragonite structures, with calcenohedral PCC being the most widely used in the wet end of papermaking. Aragonite can be produced in different ways and interestingly by changing the sequence of addition in the Kraft causticizing process. Pouget et al.3 showed that the initial stages of template-controlled CaCO3 formation start with prenucleation clusters with dimensions of 0.6 to 1.1 nm (step 0). Aggregation of these clusters in solution leads to the nucleation of amorphous calcium carbonate (ACC) nanoparticles with a size distribution centered around 30 nm (step 1). Association of these particles with the template surface initiates the growth of ACC (step 2), using the nanoparticles in their neighborhood as feedstock. Next crystallization starts, resulting in the formation of poorly crystalline particles (step 3). Randomly oriented nanocrystalline domains are formed inside the otherwise amorphous particles (step 4). In the last steps, the orientation that is stabilized through the interaction with the monolayer becomes dominant (step 5) and develops into a single crystal (step 6). This single crystal probably grows by the further addition and incorporation of ions and clusters from solution. Gebauer et al.4 speculate that the release of water molecules from the hydration shell of ions provides a substantial entropy gain favoring prenucleation cluster formation. Piana et al.5 used metadynamics to explore the free energy surface for ion diffusion across the CaCO3 surface. Obviously, our work occurs at a much larger scale and is described later in this manuscript.

Fillers are generally added to pulp prior to the headbox, or as a coating applied to the surface of sheet once it is already formed. Although each type of filler has specific characteristics and fulfills particular functions, their role in the pulp and paper industry can be summarized as follows: (1) to reduce production cost (fiber substitution); (2) improve optical properties (opacity, brightness); (3) improve printability (ink holdout, greater levels of gloss, and better image quality); (4) improve sheet uniformity; (5) improve surface smoothness; and (6) improve dimensional stability.1 However, fillers may have negative effects: (1) reduce mechanical strength (interference with interfiber bonding); (2) abrasion (on wires, blades and printing plates); (3) impair retention (increase of retention aid dosage); (4) increase two-sidedness; (5) reduce stiffness; (6) increase dusting tendency; (7) increase the quantity of deposits in the paper machine
Fillers weaken paper by lowering the fiber–fiber bonded area.11,17 One possibility is that filler particles act as flaws, causing local areas of stress concentration, which initiate sheet failure.18 Tanaka et al.17 showed that the addition of potato starch improves the strength properties of nonfilled sheets made solely from Kraft pulp, without changing the structure, whereas beating or addition of filler changes their structure. Many authors have studied possible methods to introduce calcium carbonate fillers, and/or calcium carbonate composites, in pulp or paper and their effects on the optical and physical properties.19–30 Several patents have been issued regarding the increase of calcium carbonate filler level in paper.31–37 Fillers often form aggregates well before sheet consolidation, especially in the short circulation loop of the paper machine.38 Laboratory studies showed that (i) potato and tapioca starches were able to aggregate PCC, using deionized and process water at 50 °C, (ii) tapioca starch gave the highest rate of PCC aggregation and aggregate size compared to potato starches,39 and (iii) the increase of collision efficiency at higher tapioca starch dosage was probably due to a more significant increase in the effective diameter of PCC particles.40

Figure 1. (a) SEM pictures showing filler aggregates in fine paper grade made from recycled fibers. (b) The picture on the right is an enlargement of a floc seen on the left. (c) SEM and (d) SEM/X-ray mapping of calcium in the filler aggregates.
Interestingly, the size of the aggregates was increasing as the pulp samples were taken closer to the headbox of the paper machine. This can probably be explained by the flocculating agents added prior to the headbox and by the flocculation of the originally nonretained fillers, which can then be incorporated as aggregates in the sheet, that occurs in the short circulation loop. The challenge is to find the best compromise between the optical and strength properties of paper.

Macromolecules adsorbed onto the colloidal particle surface may either stabilize or destabilize the dispersions. The behavior will depend on the degree of surface coverage, molecular weight, charge density, type of polymer, and degree of dissolution. For partially covered surfaces, the already adsorbed polymer on a given particle may attach to the bare surface on another one, forming a particle—particle bridge (bridging flocculation). The bridging flocculation mechanisms have been extensively studied.

An important question is how can aggregation be induced to give a specific type of aggregate? The kinetics of interactions probably plays a critical role in the type of aggregates that can be created. Polymer type, concentration and experimental conditions can be adjusted to create open or dense aggregates. Two distinct limiting regimes of irreversible colloid aggregation (without shear) have been identified: “Diffusion-Limited Colloid Aggregation” (DLCA) giving open aggregates and “Reaction-Limited Colloids Aggregation” (RLCA), giving dense aggregates. Each one has its own characteristic dynamics and produces aggregates with different fractal dimensions \(d_f\) where the mass of aggregate scales as \(a^{d_f}\) \((M \approx a^{d_f})\). DCLA implies an aggregation efficiency \(\alpha\) of one, and RLCA to \(0 < \alpha < 1\). Both can occur in papermaking. Lin et al. showed the universality of DLCA and RLCA. DLCA was studied by increasing the ionic strength of the system to ensure that the system is only limited by diffusion and not by electrostatic repulsion. RLCA is the opposite, in the sense that the colloids are aggregating at a slow rate due to the presence of electrostatic charges, or other interactions, thus giving dense aggregates. Lin et al. used gold \((a = 7.5 \text{ nm})\), silica \((a = 3.5 \text{ nm})\), and polystyrene \((a = 19 \text{ nm})\) to demonstrate the universality in colloid aggregation. They showed a striking similarity in the structure of the clusters of the different colloids in each regime: RCLA, resulting from slow coagulation, gave \(d_f = 2.1\); DCLA, which covers rapid coagulation, gave \(d_f = 1.75\). Fast aggregation occurs between particles with the same sign at high salt concentration, or for oppositely charged particles. Weitz et al. set the limits for the fractal dimension for irreversible kinetics aggregation of gold colloids, as \(1.75 \leq d_f \leq 2.05\). In terms of flocculation efficiency \((a, W = 1/\alpha)\) one would expect that low flocculation efficiency would result in denser aggregates and higher fractal dimension, whereas high flocculation efficiencies would give open aggregates, i.e., lower fractal dimension. The above two phenomena are different from the aggregation of large PCC particles, which is shear induced. Nevertheless, they parallel each other in the sense that it might be possible to control the experimental conditions to obtain open or dense aggregates. In papermaking, both perikinetic (diffusion controlled) and orthokinetic (shear induced) interactions are present, although most PCC aggregation will be shear induced.

Yilmaz and Alemdar developed a technique, based on steady state fluorescence measurements, to study cluster–cluster aggregation and sedimentation kinetics of organoclay. They reported that pyranine was used as a fluoro-surfactant (bridging effect) and argued that the fluorescence intensity during the sedimentation process can be used to measure the fractal dimension of the aggregates as a function of organoclay concentration. However, none of the above publications report measurements of floc strength directly. Strength was inferred from the relationship between mixing intensity and retention.

The pioneering work using direct micromechanical measurements of floc strength showed that (i) there was no correlation between floc size \((6 \text{ to } 40 \text{ nm})\) and floc tensile strength \((2 \text{ to } 200 \text{ nN})\); (ii) two breakup mechanisms, depending upon floc structure: (a) surface erosion or (b) cohesive failure/large scale fragmentation; and (iii) very low strength when fractured flocs were put back together. The direct micromechanical measurements of floc strength (including PCC/cofactor) showed that: (i) PEO molecular weight \(2 \text{ to } 8 \text{ million Dalton}\) has an enormous effect on floc strength \((10 \text{ to } 130 \text{ nN})\), (ii) there is a large range in elasticity (fracture toughness) depending upon cofactor types (sulfonate containing phenolic resin and a linear copolymer of vinylphenol and sodium acrylate), and (iii) polymers that give the highest retention also make the strongest flocs.

In our previous work, the kinetics of PCC aggregation was studied and compared with theoretical models. It was found that the flocculation efficiency depends on the PCC surface area that can participate in bridging (bridging surface area), i.e., the surface area associated with the most protruding surface asperities. This surface area is much smaller than the total
surface area available for polymer adsorption. We proposed that the effective bridging surface area, which can form bonds between PCC particles or aggregates, should be used to study the kinetics of PCC aggregation, and not the total or projected surface area.61

In this work, we studied the properties of the final PCC flocs (aggregates) and correlate them with the type of polymer and with the flocculation kinetics studied earlier.61 PCC aggregation was studied using static light scattering/diffraction (SLS), real-time fluorescent video imaging (RTFVI), photometric dispersion analysis (PDA), image analysis, scanning electron microscopy (SEM), and light microscopy. Moreover, the reversibility and the strength of the aggregates, as well as the type of aggregates, were investigated.

MATERIALS AND METHODS

Chemicals. Precipitated Calcium Carbonate (PCC). Precipitated calcium carbonate (Albacar-HO from Mineral Technology Inc.) was used. The weak negative charge density of −1.3 mequiv/kg (ionic charge of the slurry: −272 μequiv/L) was measured for a 20.9% suspension of PCC sampled from the satellite production plant, without dilution. The pH of the PCC...
The adsorption isotherms were obtained by molecular modeling calculations, but turns negative upon dilution by adsorbing impurities, even in distilled water, and it also turns negative in papermaking process water. The average particle size, measured by static light scattering/best fit diffraction pattern without constraint, is 4.4 μm (Figure 3). Measurements with and without ultrasound gave very similar PCC particle sizes. Because these results were higher than those measured by sedimentation (1.43 μm), SEM was performed to validate them. The SEM pictures were obtained by taking one drop of stirred 20.9% PCC suspension and diluting it to 1/1000 to ensure discrete particles. Results showed the PCC particles to be irregular in shape, having lots of asperities, within the same size range as that measured by SLS/diffraction (Figures 3 and 4). The experimental specific surface area (SSA), measured by nitrogen adsorption, was reported to be 13.95 ± 0.70 m²/g PCC by the supplier (2-year average).

Polymers. The polymers used to flocculate PCC are in Table 1, together with their charge density and some other properties. For all commercial dry polymers, including PEO, fresh solutions were prepared the day of experiment. Starch was cooked at 95 °C for 45 min at 2% (w/w) solids. After the cooking time, the starch was diluted with water and kept warm (40–45 °C) during the experimental work. All polymers were dissolved using deionized water.

Adsorption Isotherm. The adsorption isotherms were measured to determine the maximum amount of polymer adsorbed on the slightly negative PCC. Two different chemistries were evaluated using (a) sodium salt of partially hydrolyzed PVFA/NaAA, an amphoteric polymer (Table 1, Figure 5) and (b) cationic potato starch, because it is commonly used in papermaking processes (Table 1).

Even though the chemistry differs, polyethylenimine (PEI) has been shown to adsorb on GCC and PCC and adsorption isotherms after 1 h of equilibration gave Γmax in the range of 4–10 mg PEI/g of PCC, depending on the particle size, surface area, and electrophoretic mobility. Our results are within their range.

Particle Size Analyzer (Static Light Scattering/Diffraction). Particle size analyses were performed using a Malvern Mastersizer instrument equipped with a Hydro 2000S wet dispersion accessory (A). Static light scattering/diffraction (SLS) uses the full Mie theory to calculate the particle size. A refractive index of 1.607 was used for PCC. Results for PCC and PCC/polymer systems are an average of five measurements, with a stirring rate of 1925 rpm and no ultrasound.

Photometric Dispersion Analyzer (PDA). Aggregation. Changes in the state of PCC aggregation were monitored by a Photometric Dispersion Analyzer (PDA 2000 Rank Brothers, Cambridge, U.K.). The PCC suspension was pumped from the outlet of a 1-L beaker through a transparent 3 mm diameter tubing into the photocell of the PDA, which monitors the fluctuations in intensity of transmitted light. The experimental apparatus and the mathematical background of this method for the measurements of the flocculation and breakup kinetics has been shown to adsorb on GCC and PCC and adsorption isotherms after 1 h of equilibration gave Γmax in the range of 4–10 mg PEI/g of PCC, depending on the particle size, surface area, and electrophoretic mobility. Our results are within their range.

![Figure 5](image-url)
Figure 5. Molecular structure of the sodium salt form of partially hydrolyzed polyvinyl formamide copolymerised with acrylic acid (PVFA/NaAA).

![Figure 6](image-url)
Figure 6. Normalized changes in apparent particle size (ΔR/ΔR0) as a function of shear rate (s⁻¹) and as flow rate (mL/min) for different polymer treatments: 5 mg PVFA/NaAA/g of PCC; 2 mg C-starch/g of PCC; and 0.03125 mg PEO/0.143 mg cofactor/g of PCC; cofactor/PEO ratio of 4:1. The PCC concentration was 1g/L, temperature was room temperature, no salt was added, and the stirring rate was 300 rpm. Solid symbols show the apparent particle size after the shear was reversed from high to low level. Top left and bottom right pictures show the PEO/Cofactor/PCC aggregates under the lowest and highest shear rate, respectively.
been described in previous work.61 Moreover, the changes in R (ΔR) correlate with changes in size (Δa) measured by static light scattering/diffraction.61 This technique is ideal to measure the breakup of aggregates and hence their floc strength.

Microscopy and Real Time Fluorescent Video Imaging (RTFVI). Fluorescent images were acquired on a Leica DM-IRB inverted microscope equipped with a Hamamatsu intensified charge-coupled device (EB-CCD) camera C7190–21 (Hamamatsu City, Japan), and automated image acquisition software (Metamorph: Universal Imaging Corporation, Downington, PA). Polymer was tagged with an aldehyde reactive fluorescent probe, Alexa Fluor 488, to ensure proper visualization. Alexa Fluor 488 (Invitrogen Inc.) and PVFA/NaAA (0.05\% w/w) were stirred together for 1 h in deionized water. The solution was then dialyzed for 12 h using a 3500 Mw cutoff membrane to remove any free probes. The fluorescent polymer is used to visualize PCC aggregation. Salt (CaCl$_2$) was added to the PCC suspension to simulate the papermaking process. Shear is only applied during a few seconds after the addition of salt and polymer to the PCC suspension. Salt (CaCl$_2$) and polymer were added simultaneously. Once the aggregation process has been initiated, about 1–1.2 mL of the suspension was poured into a small cuvette, without agitation. The estimated time between the injection of the chemicals (salt (CaCl$_2$) and polymer), and the imaging is about 10 s; results were corrected accordingly. This real time fluorescent video technique has the advantage of being able to visualize PCC aggregation. Two images were recorded every second, for at least 2 min or more, during an experiment. However, the experimental set up leads to the settling of the PCC aggregates, which makes interpretation of the particle size difficult. Various experimental conditions were attempted to overcome this, e.g., more aggregation leads to more and faster settling. Numerous PCC concentrations were explored: from 0.1 to 2500 ppm, and the optimum was found to be between 1580 and 1780 ppm. From this method, combined with image analysis, an attempt was made to measure the average number of discrete PCC particles in an aggregate, as a function of time, which is valuable information in the study of the kinetics of PCC aggregation. To get accurate information, the video images

Figure 7. Accumulation of PCC aggregates on the bottom of the cuvette as a function of time. Experimental conditions: 1940 ppm PCC, 1 mg PVFA/NaAA/g PCC, 1 mM CaCl$_2$, and room temperature. Selected large aggregates are indicated by the circles. These images were enhanced to improve the contrasts.
were treated to improve the contrasts, using the sharpen mode of ImageJ software.

Image Analysis. For experiments (1 mg and 5 mg PVFA/NaAA/g of PCC), video images were taken from 0 to 45 s. These images were analyzed using image analyzer software (Clemex Vision PE version 3.5). A number of large aggregates were selected using the interactive mode of the image analyzer software. The area of particles was divided by the total area of the image, giving the fractional surface area covered by PCC particles or aggregates. Then, the fractional coverage area was plotted as a function of time.

RESULTS

Strength and Reversibility of PCC Aggregates.

Strength of PCC Aggregates (PDA Experiments). PDA experiments were performed to show the relative intrinsic strength of PCC aggregates. On the basis of previous results, the dosages of the chemicals (PVFA/NaAA, C-starch, and PEO/Cofactor) were selected to get a similar particle size at the lowest shear rate. Figure 6 shows the normalized apparent PCC aggregate size, expressed as $\Delta R/\Delta R_0$, under different shear rates, and where ΔR_0 is the PCC apparent particle size at the lowest shear rate. The mean shear rates (in reciprocal seconds) were calculated from the volumetric flow rate, Q, using the following:

$$G = \frac{8Q}{3\pi r^2}$$ \hspace{1cm} (3)

where Q is the flow rate, and r is the radius of the inner diameter of the flexible tubing (3 mm).

Larger aggregates (higher ratio, ΔR) imply stronger aggregates and less breakup under the same shear rate. Figure 6 shows that, generally, the aggregate strength is similar when they are induced by PVFA/NaAA and starch, while the PEO/cofactor system gives somewhat weaker aggregates at high shear rates. It is worth mentioning that the current cofactor/PEO ratio is 4.5:1, while Goto and Pelton using a different cofactor, reported that the maximum scalenohedral PCC floc strength corresponded to a ratio of 2:3:1. They found that the flocs broke up when exerting an extensional force of about 100–140 nN. Results from Figure 6 show again that a dynamic equilibrium exists between the formation and breakup of aggregates at steady state. The reversibility of the aggregates was verified by measuring the ΔR after reversing the high shear rate back to the low shear rate. Figure 6 shows that PVFA/NaAA and starch-induced aggregation are partially reversible, while PEO/cofactor induced aggregation is not reversible.

Microscopy and Video Imaging. Numerous real time videos in fluorescent mode were performed to study the kinetics of PCC aggregation. Figure 7 shows typical images from 0 to 45 s, for the 1 mg PVFA/NaAA/g of PCC, 1 mM CaCl$_2$ system. Because of the way the experiments were performed, it was not obvious if the images in Figure 7 result from PCC aggregation and/or sedimentation at the bottom of the cuvette on the glass lamella. Consequently, the fractional surface area covered by the PCC was measured as a function of time (Figure 8). During sedimentation, the PCC flux toward the glass lamella surface is $j = \pi n v$, n is the number of particles per unit volume, and v is the velocity. Hence, the fractional surface coverage, the surface occupied by the PCC out of the total surface, is $S = \pi a^2 j t$, t being the time. Substituting for v, the Stokes sedimentation velocity, and expressing n in terms of concentration, c, yields the following:

$$S = \frac{gac \Delta \rho t}{6\eta \rho_{PCC}}$$ \hspace{1cm} (4)

where g is the gravitational acceleration, a the PCC radius, c the PCC concentration, $\Delta \rho$ the density difference ($\rho_{PCC} - \rho_{H_2O}$), ρ_{PCC} the density of PCC, η the viscosity of water, and t the time.

Equation 4 predicts that the fractional surface area should increase linearly with time. Indeed, Figure 8 shows that S is linearly related to time and supports that sedimentation is the main mechanism for the 1 mg PVFA/NaAA/g PCC system ($r^2 = 0.9999$ for 1 mg PVFA/NaAA/g PCC). Moreover, Figure 8 shows that the best fit for the radius of PCC is 5.0 μm, larger than the 4.4 μm of the nonaggregated PCC, implying that a small amount of aggregation has occurred. Because the estimated time between the injection of chemicals (CaCl$_2$ and PVFA/NaAA) and the imaging is about 10 s, this is about the amount of aggregation you can expect in such a short time. Stopping the shear is equivalent to quenching the aggregation.
Furthermore, the light intensity was measured to validate the above trend and to see if polymer adsorption can be measured with this technique. Even though the light intensity follows the same trend as the fractional surface area, very few data points are available, and a lot more experiments are needed to draw any conclusion.

This method, combined with image analysis may be used to estimate the number of discrete PCC particles in an aggregate. For example, the PVFA/NaAA system at a dosage of 5 mg/g of PCC and 1 mM CaCl₂ shows the average number of discrete PCC particles in selected large aggregates to be about 17−18 (Figure 9). Because this technique is exploratory and very time-consuming, large aggregates were selected to demonstrate its usefulness. Consequently, Figure 9 does not intend to give a statistical average. More work is needed to demonstrate the potential of this new method.

Type of Aggregates. Whether open or dense aggregates are suitable for papermaking is not clear yet, but we can speculate that the open aggregates would be better, at least for the optical properties of paper, because of the larger surface area to scatter more light.

The chemical additives were added into a 1 L dispersion of 1000 ppm of PCC. The suspension was stirred for 5 min at 300 rpm using a 3 cm propeller before an aliquot was taken for image analysis.

Table 1. Flocculation efficiency α and Average particle size (μm)

<table>
<thead>
<tr>
<th>Polymer System</th>
<th>α (μm)</th>
<th>α (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVFA/NaAA: 0.5 mg/g PCC</td>
<td>0.02 (6.7)</td>
<td>0.06 (8.7)</td>
</tr>
<tr>
<td>C-starch: 0.5 mg/g PCC</td>
<td>0.03 (7.9)</td>
<td>0.21 (18.1)</td>
</tr>
<tr>
<td>PEO/cofactor: 0.05 mg PEO/g PCC</td>
<td>0.2 (9.2)</td>
<td>1 (N.A.)</td>
</tr>
<tr>
<td>PEO/cofactor: 5 mg PEO/g PCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. PCC floc sizes for low and high dosages of PVFA/NaAA (0.5 and 5 mg/g PCC), C-starch (0.5 and 5 mg/g PCC), and PEO/Cofactor (0.05 and 5 mg of PEO/g PCC). The cofactor/PEO ratio, 4.5:1, was constant for both PEO dosages. The flocculation efficiency (α, $W = 1/\alpha$) and the statistical average particle size were taken from Figures 11 and 12. However, these parameters do not correlate with the above pictures because only one floc or a few flocs are shown. Reproduced with permission from FRC, copyright 2009, under the Berne Convention and the International Copyright Convention. Published by The Pulp and Paper Fundamental Research Society.
recording. Image recording was performed 1 to 4 h after flocs reaction. The dispersions were manually gently shaken, and 100 μL was placed on a microscope glass slide. A cover glass was carefully deposited on the drop, and the excess of water was removed with absorbent paper. Photos were taken using dark field illumination.

Figure 10 compares the PCC floc structures and sizes for low and high dosages of PVFA/NaAA (0.5 and 5 mg/g PCC), C-starch (0.5 and 5 mg/g PCC), and PEO/Cofactor (0.05 and 5 mg of PEO/g PCC). These three chemical systems were selected from previous work because they cover a wide range of aggregate sizes.61 PEO/cofactor systems show fast aggregation, generating large aggregates of about 23 μm with 1 mg/g of PCC; C-starch shows intermediate aggregation rates and floc sizes; and PVFA/NaAA systems show a slower aggregation rate and aggregate sizes of 5–8 μm (Figure 11).

From Figures 11 and 12, it can be seen that low dosages lead to low flocculation efficiencies and smaller flocs, whereas high dosages lead to higher flocculation efficiencies and larger flocs, which is consistent with Sang and Englezos.40 For low dosages, the size of the flocs is due to a dynamic equilibrium between floc formation and breakup, because there is sufficient room for further bridging and flocs should grow without limit if breakup was absent. For higher dosages, the floc size may be determined by a competition between polymer adsorption and particle aggregation. Flocs form before the particle surface is fully saturated by the polymer, and subsequent polymer adsorption prevents further floc growth because of electrosteric repulsion between the PCC particles.68 This implies that the floc strength increases with polymer dosage. This explains the difference in floc size for the two dosages in Figure 10. However, from the floc images, it is hard to conclude whether flocs get denser or not when they get larger (Figures 10 and 13). Larger flocs contain more particles, many of which overlap in an image. Moreover, the density of flocs depends on the shear history of the flocculation process, and flocs often get denser at high shear.74-78 This densification could be more pronounced for larger flocs because the hydrodynamic forces exerted on them are larger. This might be the reason why there is no obvious correlation between the flocculation efficiencies and floc densities, as is the case for perikinetic coagulation (Figures 10–13). More recently, Rasteiro et al.79 looked at PCC flocs resistance and reflocculation, while others investigated PCC flocculation using cationic polyelectrolytes having different charge densities or ionic strength.

The log W values did not rise again when the dosage was increased beyond an optimum point, likely because of transient aggregation, which was irreversible under the experimental conditions (Figure 12). Similar transient aggregation of PCC with CPAM was observed by Vanerek et al. 68

Representative examples of floc sizes induced by C-starch for low and high dosages are shown in Figure 13.

Proposed Mechanism. From the above results and previous work,65 we speculate that when two scalenohedral crystal type PCC particles aggregate, there is a small effective area to bind them (Figure 14). This effective area is much smaller than the projected surface area. The implication of this observation is that the experimental SSA, e.g., obtained from BET, cannot be used for the kinetic calculations because a significant amount of polymers is buried inside the asperities (dark green areas in Figure 14).

From the above pictures, model polymers were added to partially cover these scalenohedral crystal type PCC particles, where the cationic polyelectrolyte binds with the slightly anionic PCC particle, mainly through electrostatic interactions (top of Figure 15). Then, the other part of the cationic polyelectrolyte (e.g., loop, tail) interacts with the binding sites of another PCC particle (top of the surface asperities, light green), showing classical bridging or charge neutralization flocculation. Then, additional polymer absorption results in higher coverage of the external and internal surfaces and prevents further aggregation due to electrosteric repulsion (bottom of Figure 15).

CONCLUSIONS

PCC aggregation was studied using static light scattering/diffraction (SLS), real time fluorescent video imaging (RTFVI),
photometric dispersion analysis (PDA), image analysis, scanning electron microscopy (SEM), and light microscopy. RTFVI combined with image analysis was used to measure the number of discrete PCC particles in aggregates. This method has the potential of measuring polymer adsorption on particles. Using RTFVI, it was found that the fractional surface coverage in the area of observation by PCC aggregates increases linearly with time, with the slope determined by the size of the aggregates. PEO/cofactor induced aggregates were weaker at high shear and far more irreversible than those induced by PVFA/NaAA or C-starch. Floccs produced at low polymer dosages were smaller and weaker than those produced at higher dosages. Extension of this work to study the pH and salt dependence of weak polyelectrolytes would be of interest.

Figure 13. Optical (left) and SEM (right) images of PCC aggregates induced by C-starch. Top and bottom images show PCC aggregates produced from low and high C-starch dosages, respectively. The optical and SEM do not show the same aggregate.

Figure 14. Cartoon showing PCC−PCC aggregation of real mirror images of a PCC particle: (1) The bridging surface area is much smaller that the projected area and (2) the top of the surface asperities (light green) are the bonding sites.
We speculate that when two scalenohedral crystal type PCC particles aggregate, there is a small effective surface area to bind them, mainly through classical bridging or charge neutralization flocculation. Moreover, additional polymer absorption results in higher coverage of the external and internal surfaces and prevents further aggregation due to electrosteric repulsion.

The implication of this finding is that the experimental SSA, e.g., obtained from BET, cannot be used for the kinetic calculations because a significant amount of polymers is buried inside the scalenohedral crystal type PCC asperities. Moreover, in modifying fillers for papermaking applications, using polymers which cannot penetrate the porous interior structure would be more cost-effective.

AUTHOR INFORMATION

Corresponding Author
E-mail: rgaudreault@cascades.com.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors wish to acknowledge the valuable assistance from colleagues at Harvard University: Dr. Cliff Brangwynne, Dr. Gijjs Koenderink, Dr. Tomas Angelini, and Dr. Carlos Martinez for their assistance on fluorescence video imaging, Dr. Chanjoong Kim and Dr. Daniel Blair for valuable insights. The authors also thank Denis Berthiaume from Cascades Rolland Division and Pascal Allard for the papermaking process, Claude Tremblay for the scanning electron microscopy, Eric St-Pierre for laboratory assistance, and Frédéric Ancil for the image analyses, all from the Research and Development Centre of Cascades Inc. The authors also acknowledge permission from The 14th FRC Symposium to reproduce figures from ref 67. Financial support from NSERC and FPInnovations for an Industrial Research Chair is also acknowledged.

REFERENCES

(64) Yeung, A.; Gibbs, A.; Pelton, R. Effect of Shear on the Strength of Polymer-Induced Flocs. J. Colloid Interface Sci. 1997, 196, 113.

