Absolute Instability of a Liquid Jet in a Coflowing Stream

Andrew S. Utada, Alberto Fernandez-Nieves, Jose M. Gordillo, and David A. Weitz

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Área de Mecánica de Fluidos, Departamento de Ingeniería Energética y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092 Sevilla, Spain
The Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 13 July 2007; published 11 January 2008)

Cylindrical liquid jets are inherently unstable and eventually break into drops due to the Rayleigh-Plateau instability, characterized by the growth of disturbances that are either convective or absolute in nature. Convective instabilities grow in amplitude as they are swept along by the flow, while absolute instabilities are disturbances that grow at a fixed spatial location. Liquid jets are nearly always convectively unstable. Here we show that two-phase jets can breakup due to an absolute instability that depends on the capillary number of the outer liquid, provided the Weber number of the inner liquid is > $O(1)$. We verify our experimental observations with a linear stability analysis.

DOI: 10.1103/PhysRevLett.100.014502
PACS numbers: 47.61.Jd, 47.27.nf, 47.27.wg, 47.55.db

A thin stream of a Newtonian fluid is always unstable to breakup into drops, due to the surface-tension-driven Rayleigh-Plateau instability [1,2]. If the fluid is forced through an orifice, drop formation can occur either right at the exit or further downstream, at the end of a jet of fluid. These represent two regimes of the instability, dripping and jetting [3,4]. They are familiar to anyone who has watched water drip or flow from a faucet. Dripping is a common example of an absolute instability [5–9]; the perturbations that lead to drop pinch-off grow at a fixed location in space and at a frequency that is intrinsic to the system, making it insensitive to external noise [10]. As a result, monodisperse drops are almost always produced through a dripping instability [5–7]. By contrast, jetting is virtually always the result of a convective instability [11,12]; the perturbations that lead to jet breakup amplify random noise as they are advected along the interface of the jet, inevitably leading to less uniform drops. One means of generating highly uniform drops in the jetting regime would be to establish an absolute instability. This would be of significant scientific interest, and also of great value for technologies that require highly uniform drop formation, such as microfluidics [13,14], emulsification [15,16], and encapsulation [15]. However, absolute instabilities in the jetting regime have only been observed in the rarified environment of microgravity [17,18]. Despite their great technological potential and scientific interest, they have never been observed in liquid jets surrounded by a second viscous liquid.

In this Letter we report the observation of jets in a coflowing stream that break up into drops due to an absolute instability. We use a microcapillary device and identify characteristics of the jet shape and breakup that indicate an absolute instability. We further show that by increasing the shear stress on these jets above a critical value, the instability transitions from absolute to convective. We confirm the interpretation of our experimental results using a linear stability analysis.

We generate the jets in coflowing liquids using a capillary-based microfluidic device consisting of two co-axially aligned cylindrical capillaries housed within a larger square tube. We achieve good alignment of the cylindrical capillaries within the square tube by matching their outer diameters to the inner dimension of the square tube. We taper the tip of one of the inner capillaries to a diameter of $d_{tip} \approx 30 \mu m$ and insert it into the second untapered capillary, which has an inner diameter of $D \approx 600 \mu m$ and a length of $\approx 5 cm$; a schematic of the tapered tip is shown in the inset of Fig. 1(a). The outer liquid is poly(dimethylsiloxane) (PDMS) oil with a viscosity, $\eta_{out} = 10 mPa \cdot s$, while the inner liquid is deionized water.

FIG. 1 (color online). (a) High-speed image of a typical jet. The small neck between the jet and the bulb has a diameter, d_{neck}. The outer diameter of the tip is $\approx 40 \mu m$, while $d_{tip} \approx 30 \mu m$ and the inner diameter of the surrounding cylindrical capillary is $\approx 600 \mu m$. Here $W_{in} = 5.5$. (Inset) Device schematic (not to scale). (b) Neck diameter as a function of time. The line is an exponential fit to the envelope. The frequency of drop formation is $\approx 40 Hz$ and the frequency of oscillation $\approx 2000 Hz$. The flow rates of the outer and inner fluids are $9 \times 10^4 \mu L/hr$ and $6 \times 10^5 \mu L/hr$, respectively.
with \(\eta_{\text{in}} = 1 \text{ mPa} \cdot \text{s} \). The spatial surface tension between the fluids is \(\gamma = 40 \text{ mN/m} \), as measured by the pendant-drop method [19]. We drive each fluid with a syringe pump and image the jet with a high-speed camera. We note that gravitational forces are not relevant in our experiments as all characteristic length scales are well below the capillary length.

One common way of forming a jet in a coflow is to increase the outer flow rate, which increases the capillary number of the outer fluid, \(C_{\text{out}} = \eta_{\text{out}} u_{\text{out}} / \gamma \), where \(u_{\text{out}} \) is the mean velocity of the outer fluid. This number defines the balance of viscous shear forces to surface tension forces. Instead, we generate jets by injecting the inner fluid at a velocity large enough that inertial forces overcome surface tension forces at the exit of the tip [20]. This balance of forces is defined by the inner Weber number,

\[
W_{\text{in}} = \rho_{\text{in}} L u_{\text{in}}^2 / \gamma,
\]

where \(\rho_{\text{in}} \) is the density of water, \(L \) is a characteristic length scale equal to the diameter of the jet, and \(u_{\text{in}} \) is the mean velocity of the inner fluid. At the exit of the capillary tip \(L = d_{\text{tip}} \) and we calculate \(u_{\text{in}} \) as the volume flow rate of the inner fluid divided by the cross-sectional area of the jet. In coflowing streams, jetting occurs when \(W_{\text{in}} \approx O(1) \) at the exit of the capillary [20]. In our experiments, the inner Reynolds number, \(R_{\text{in}} = \rho_{\text{in}} L u_{\text{in}} / \eta_{\text{in}} \) is \(\sim O(50) \), while the outer Reynolds number, \(R_{\text{out}} = \rho_{\text{out}} D u_{\text{out}} / \eta_{\text{out}} \), is \(\sim O(1) \), where \(\rho_{\text{out}} = 960 \text{ kg/m}^3 \) is the density of PDMS oil. Although jetting of a liquid in air also occurs at similar \(W_{\text{in}} \) [3,4], the shape of the jets is dramatically different from those generated by the coflow. A water jet falling from a faucet under gravity in air also occurs at similar \(W_{\text{in}} \) [22], the shape of the jets is dramatically different from those generated by the coflow.

To understand the temporal oscillations of the jet, which remain nearly stationary in space, we turn to linear stability theory: we decompose the perturbations on the jet into Fourier modes, assumed to be axisymmetric. Any parameter associated with the flow, such as the velocity or pressure, is defined to be proportional to \(e^{i(kz-\omega t)} \), where \(z \) is the axial coordinate and \(t \) is time. In general, the frequency, \(\omega = \omega_r + i \omega_i \), and wave number, \(k = k_r + ik_i \), of the perturbations are complex and are related through a dispersion relation of the form \(D(\omega, k) = 0 \) [10]. The superposition of the different modes generates wave packets that travel both up and downstream along the interface of the jet, with group velocity, \(v_{\text{group}} \). Typically, a temporal stability analysis is used to determine whether or not a system is stable by examining the behavior of the perturbations over time. In this analysis, the wave number is assumed to be real, \(k = k_r \), to separate temporal from spatial instability. If the growth rate of the instability is \(\alpha_i < 0 \), then the perturbations decay in time and the system is stable and jet breakup will not occur; by contrast, if \(\alpha_i > 0 \), the perturbations grow exponentially, making the system unstable and drop pinch-off can occur. In this case, this analysis is

The spatial oscillations on the jet and the fluid neck itself travel only a short distance downstream with a velocity comparable to \(u_{\text{out}} \) during the drop pinch-off process. At sufficiently large \(u_{\text{out}} \) the velocity of the neck and that of the particles become comparable [Fig. 2(a)].

The temporal pulsing and the nearly spatially stationary oscillations of the diameter are highly unusual behavior for jet breakup at moderate Reynolds numbers. More typically, when a thread of one fluid breaks within a second, the minimum thread diameter decreases to zero at pinch-off without oscillations of any sort [23,24], although oscillations have been observed in a numerical simulation [25]. To understand the temporal oscillations of the jet, which remain nearly stationary in space, we turn to linear stability theory: we decompose the perturbations on the jet into Fourier modes, assumed to be axisymmetric. Any parameter associated with the flow, such as the velocity or pressure, is defined to be proportional to \(e^{i(kz-\omega t)} \), where \(z \) is the axial coordinate and \(t \) is time. In general, the frequency, \(\omega = \omega_r + i \omega_i \), and wave number, \(k = k_r + ik_i \), of the perturbations are complex and are related through a dispersion relation of the form \(D(\omega, k) = 0 \) [10]. The superposition of the different modes generates wave packets that travel both up and downstream along the interface of the jet, with group velocity, \(v_{\text{group}} \). Typically, a temporal stability analysis is used to determine whether or not a system is stable by examining the behavior of the perturbations over time. In this analysis, the wave number is assumed to be real, \(k = k_r \), to separate temporal from spatial instability. If the growth rate of the instability is \(\alpha_i < 0 \), then the perturbations decay in time and the system is stable and jet breakup will not occur; by contrast, if \(\alpha_i > 0 \), the perturbations grow exponentially, making the system unstable and drop pinch-off can occur. In this case, this analysis is

![Image](439x256 to 510x279)

FIG. 2 (color online). (a) Downstream velocities of the neck (filled circles), \(u_{\text{neck}} \), and 6 \(\mu \text{m} \) tracer particles (open circles), \(u_{\text{particle}} \), dispersed in the inner fluid as a function of the velocity of the outer fluid. The dashed line is the mean velocity of the inner fluid at the exit of the capillary tip. (inset) Image of a jet containing dispersed particles. (b) The profile of the jet shown in Fig. 1(a) (open squares) and the \(W_{\text{in}} \) (line) as a function of the axial position along the jet.
followed by a spatiotemporal analysis that distinguishes convective from absolute instabilities. This distinction is made based on the Briggs-Bers criterion, which requires finding specific ω_0 and k_0 that satisfy $D(\omega_0, k_0) = 0$ and $v_{\text{group}} = \frac{\partial u}{\partial t} \mid_{\omega=\omega_0, k=k_0} = 0$, at a specific spatial location in the laboratory frame of reference [10]; physically, this condition can be qualitatively interpreted to occur when the upstream velocity of the wave packet coincides with the downstream velocity of the interface. If the imaginary part of ω_0 is negative, the instability is convective since the perturbations decay with time at the specified location. By contrast, if the imaginary part of ω_0 is positive, the instability is absolute since the perturbations grow exponentially with time at the specified location.

In our experiments, the amplitude of the oscillations at the neck that lead to drop pinch-off grows exponentially in time [Fig. 1(b)], implying that the growth rate of the instability is positive. In addition, the large difference in velocity between the neck and u_{in} [Fig. 2(a)] coupled with the spatially stationary oscillations throughout the entire pinch-off process suggests that the superposition of the perturbations produces the condition of $v_{\text{group}} = 0$ at a fixed spatial location. Further insight into the breakup of these jets can be gained by examining the decrease of \mathcal{W}_{in} along the axis of the jet. Although, we generate these jets by injecting the inner fluid at $\mathcal{W}_{\text{in}} > O(1)$, drop pinch-off from the end of the jet occurs only after the jet diameter has widened sufficiently such that \mathcal{W}_{in} decreases to ~ 1; this decrease is shown by the line superimposed on the jet profile in Fig. 2(b). Since dripping occurs only when $\mathcal{W}_{\text{in}} \leq O(1)$ [3,4] we hypothesize that the drop pinch-off mechanism from the widening jets is analogous to the dripping regime, at the end of the jet. These characteristics strongly suggest that the widening jets breakup due to an absolute instability [6,8,9].

As a further test of our interpretation, we increase the shear stress on the jet to upset the balance between the interface velocity and the upstream velocity of the wave packet; this corresponds to a transition from an absolute to a convective jet instability. Since the interface velocity is controlled mainly by the outer fluid, the relevant metric for this transition is C_{out}. In these experiments, we achieve a factor of 10 increase in C_{out} by increasing η_{out} from 10 to 100 mPa·s. We start by generating a jet at $\mathcal{W}_{\text{in}} = 3.1$ with $C_{\text{out}} \ll 1$, and gradually raise C_{out} by increasing u_{out}; an image of this jet before we increase u_{out} is shown in Fig. 3(a). In this particular case the jet breakup process leads to drops of two different sizes; following the detachment of the larger drop, a second smaller drop detaches from the neck as it retracts, as has been observed in other systems [26–28]. Increasing C_{out} by nearly a decade produces no significant change in the jet length, L_{jet}; however, at a critical $C_{\text{out}}^* \approx 0.65$ we observe an abrupt and dramatic increase in L_{jet}, as shown in Fig. 3(b) and 3(c). The corresponding measurements of jet length are shown as filled squares in Fig. 3(d); we label the points referring to the images in Fig. 3(a)–3(c) with the appropriate letter. Remarkably, this large increase of L_{jet} also coincides with the suppression of the spatial oscillations as the jet evolves in time [Fig. 3(b) and 3(c)].

We can quantitatively describe this transition using our linear stability analysis. We first calculate the downstream evolution of the velocity profiles of both fluids [29,30]. The velocity profile of the inner liquid is parabolic as it emerges from the tip and gradually flattens downstream due to the widening of the jet, while the velocity profile of the outer liquid is nearly parabolic although a thin boundary layer develops near the jet [31]. We then perform a spatial stability analysis under these flow conditions by determining the sign of the imaginary part of ω_0, at several axial positions along the jet [10,30]. We find that below a calculated value of $C_{\text{out}}^* \approx 0.69$, the jets are absolutely unstable within a section of the jet that is much larger than the characteristic wavelength of the absolute mode, $\lambda_0 = 2\pi/k_0$; since this section is much larger than λ_0, this mode can grow, resulting in jet breakup due to an absolute instability. Above C_{out}^*, however, the absolutely unstable section is located immediately adjacent to the tip and is greatly reduced in spatial extent. In this case, since the absolutely unstable section is very small compared to λ_0, the absolute mode can no longer grow, resulting in jet...
break up due to a convective instability. Furthermore, this calculated value of C_{out}^c is in remarkably good agreement with our experimental observations.

Our linear stability analysis further predicts that the value of C_{out}^c does not change significantly as a function of \mathcal{W}_{in} [inset of Fig. 3(d)]; this implies that the shear from the outer liquid determines the transition from an absolute to convective instability irrespective of the inertia of the inner liquid. This prediction is consistent with our data, which show that nearly the same C_{out}^c that causes the abrupt jet lengthening when $\mathcal{W}_{\text{in}} = 3.1$ also induces a similar transition when $\mathcal{W}_{\text{in}} \ll 1$, as shown by the open symbols in Fig. 3(d). This is remarkable because when $\mathcal{W}_{\text{in}} \ll 1$ and $C_{\text{out}} < C_{\text{out}}^\text{c}$ the system is in a dripping regime; above C_{out}^c, however, the system transitions from an absolutely unstable dripping regime [5–9] to a convectively unstable jetting regime. This emphasizes the analogies between the dripping and the widening-jet regimes, adding further support to our hypothesis that the increase in L_{jet} [Figs. 3(a)–3(c)] corresponds to a transition from an absolute to a convective instability.

Absolute instabilities are not widely observed in jet breakup due to the fine balance of forces required to generate them. The balance is difficult to achieve under gravitational acceleration, although it is possible in microgravity [17,18]. However, as we show here, in two-phase coflows, increasing \mathcal{W}_{in} above ~ 1 to induce the formation of a widening jet [20] can also produce the appropriate conditions for an absolute instability to form. Although we discuss the transition of the instability from absolute to convective in terms of the two control parameters C_{out} and \mathcal{W}_{in}, there are two additional dimensionless parameters that we must consider to fully describe our system; these can be chosen as $\bar{\eta}_{\text{in}}/\eta_{\text{out}}$, and the inner Ohnesorge number, $\text{Oh}_{\text{in}} = \frac{\bar{\eta}_{\text{in}}}{\rho_{\text{in}}\alpha_{\text{in}}^2} \sqrt{\text{g}d}$, which simply characterize material properties of the system and the experimental geometry. Altering these two parameters would most likely not affect the physical mechanism by which shear causes the transition from an absolute to convective instability but would likely only change the value of C_{out}^c. Nevertheless, through further exploration over the range of these four nondimensional numbers we can achieve an even greater understanding over the conditions leading to the development of absolute instabilities in two-phase systems. This could enable the tuning of the nature of the instability to offer another route to generate uniform emulsions from jet breakup.

This work was supported by the NSF (No. DMR-0602684) and the Harvard MRSEC (No. DMR-0213805). We thank M. P. Brenner for helpful discussions. A. F.-N. thanks the University of Almeria (leave of absence) and Junta de Andalucía (No. FQM-3116).

*Present address: School of Physics, Georgia Institute of Technology, Atlanta GA, 30332, USA.

\[\text{weitz@seas.harvard.edu} \]

[22] See EPAPS Document No. E-PRLTAO-99-076753 for a movie showing jet breakup in our coflowing system. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[29] This is done using the method of lines as described in [30].
[31] We neglect the presence of the bulb at the end of the jet in our analysis of the jet breakup. This is justified since we can change the size of the bulb by a factor of 2 by changing u_{out} without affecting the jet length and jet breakup mechanism.